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Nomenclature 
Notation 

Symbol Description 
k, K scalar 
k, K complex value 
k   related value 
k vector 
K Matrix 

 
Superscript Indices 

Symbol Description 
T transposed 
* complex-conjugated 

 
Subscript Indices 

Symbol Description 
a, b, c Phase index in natural coordinates 
A, B, C, D terminal indexes 
act actual 
Beschl acceleration 
BM equipment 
Brems slowdown 
calc calculated 
D diagonal components 
est estimated 
F faulty 
Fe iron losses 
G Generator 
g mutual impedance 
h Main- 
K node 
k short-circuit 
m modal 
p synchronous generated voltage 
q Source 
r rated 
ref reference 
s self impedance 
SK symmetrical components 
SP neutral point 
T Terminal 
TOS upper voltage side of the transformer 
TUS lower voltage side of the transformer 
α, β system indexes in α, β, 0 coordinates 
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Symbols 

Symbol Description 
 voltage angle 
 phase angle 

A area 
a rotary operator 
B susceptance 
C capacitance 
c correction factor 
E unity matrix 
g physical variable 
G Conductance 
H, N, M, L submatrix 
I electric current 
J Jacobian 
k factor 
K incidence matric 
l length 
M torque 
m, n, i, j control variable 
P active power 
Q reactive power 
R resistance 
S apparent power 
t eigenvector 
T transformation matrix 
t time 
U voltage 
x system state variable 
X reactance 
Y admittance 
Z impedance 
ε threshold 
ν iteration counter 
σ standard deviation 
τ transmission ratio 
λ eigenvalue 

  



 V 

 

Preamble 
The continuous and reliable availability of electric energy at any place and in a sufficient 
amount is the backbone of any advanced economy. A highly meshed, stable electric power grid 
which offers sufficient reserves is necessary to grant the high degree of reliability and security 
of supply which the customers nowadays are used to. The grid needs to be resilient to cope the 
various needs of customers at any time.  

Economic boom phases and crises, demographic changes, technological breakthroughs and last 
but not least divergent political interests have led to a continuous change in the utilization of 
the electric power system in the recent past. Grid extension efforts take much longer than the 
described changes in grid utilization, so grid reserves are decreasing. This is becoming a more 
and more severe threat to system security. That is why knowledge of the grid state is of essential 
importance for grid operators.  

In this script, the fundamental algorithms of steady-state and quasi-steady-state power system 
analysis are presented. It contains the essential approaches of modelling assets and network 
topology. Furthermore, the most relevant grid state identification algorithms are explained. The 
algorithms are suitable for the healthy, balanced system as well as for faulty, balanced and 
unbalanced conditions.  

Nowadays, commercial grid calculation software is used to do power system analysis. 
Nevertheless, a power system engineer should be able to understand the fundamental 
mathematics behind power system behavior. This will help him to use and parameterize the 
software and makes it easier to understand the results and derive solutions.  

 

At this point it is necessary to mention, that the script does not replace the lecture course and 
vice versa. Instead, the script and the lecture supplement each other. In the script, the focus is 
laid on the mathematical details and algorithms, while, in the lecture, the focus is on 
understanding the concepts  

 

While reading this script, I hope, the reader will feel the same joy I did, when I was a student 
and got introduced to power system analysis.  

 

Martin Wolter 

August 2020 
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1 Modal components 
The general composition of a three-phase electric power system is given in Fig. 1. Voltages and 
currents cannot be calculated separately for each phase due to the coupling of the phases. 

 
Fig. 1: general composition of a three-phase electric power system in natural coordinates 

The coupling of the phases results in a dense impedance matrix Z  in the linear equation system. 
Encircling of the three meshes given by the respective phase, the neutral point impedance and 
ground results in  

 
q,aaa ab ac aa N

ba bb bc bb q,b N

ca cb cc cc Nq,c

UU Z Z Z I U
U Z Z Z I U U
U Z Z Z I UU

 (1.1) 

or in abbreviated diction 

 q Nu Z i u u   (1.2) 

Usually, a symmetric and balanced three phase system is assumed. That means, that all of the 
phase impedances and all of the couplings are identical and the source voltages have equal 
magnitudes and a phase angle difference of 120° each. Usually, phase “a” is considered 
reference phase and therefore its phase angle is set to 0° to simplify calculations. 

Furthermore, assumption of a balanced system results in 

 aa bb cc s s s

ab bc ac ba cb ca m m m

j
+j

Z Z Z Z R X
Z Z Z Z Z Z Z R X

  (1.3) 

with the self-impedance sZ  and the mutual impedance mZ . Using the rotating operator  

 
2j π
3a e  (1.4) 

the source voltages can be expressed as follows 

aU
NU NZ

q,aU

q,bU

q,cU

aaZ

bbZ

ccZ

abZ

acZ bcZ

cI

bI

aI

bU cU
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q,a q

2
q,b q

q,c q

a

a

U U

U U

U U

 (1.5) 

So, in a symmetric three-phase system, the impedance matrix is diagonal-cyclic symmetric. 
Integration of symmetry into eq. (1.1) results in 

 
s g g aa

2
g s g bb q N

g g s cc

1 1
a 1
a 1

U Z Z Z I
U Z Z Z I U U
U Z Z Z I

 (1.6) 

Using modal components instead of the natural coordinates a, b, c the equation system can be 
further simplified and potentially decoupled. Transformation of the natural variables g  into 
their modal form 

m
g  shall be a linear, reversible and unique mapping which results in the 

following transformation equations 

 
m m

1
mm

g T g

g T g
  (1.7) 

Expression of u  and i  by their modal equivalent in eq. (1.6) results in 

 m mm m q NT u Z T i u u   (1.8) 

Eq. (1.8) can be solved for mu  due to the reversibility of the transformation process and results 
in 

 
1 1 1

m m m mm m q N

mm m q,m N,m

u T Z T i T u T u

u Z i u u
  (1.9) 

The described procedure is well-known in math science and called reference frame 
transformation. It aims at the development of a diagonalized system matrix mZ , with the 
eigenvalues of Z  on its main diagonal. Most of the modal transformations result in such a 
decoupled system. Depending on the problem formulation and the field of application, different 
types of modal transformation are applied. The transformation matrices are developed in the 
following chapters. 

1.1 General development of transformation matrices 
The transformation matrix mT  contains the eigenvectors that correspond to the respective 
eigenvalues. They form the modal reference frame and therefore need to be orthogonal.  

 
11 12 13

m 21 22 23 1 2 3

31 32 33

t t t
k t t t k

t t t
T t t t   (1.10) 

This means, 1t , 2t  and 3t  must be linearly independent. Otherwise, the inverse of mT  cannot 
be calculated. k is an arbitrary factor other than zero to scale the result. 
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The eigenvalues of Z are obtained by solving the characteristic polygon.  

s g g
3 2 3

g s g s s g g

g g s

det det 3 2 0
Z Z Z

Z Z Z Z Z Z Z
Z Z Z

Z E   (1.11) 

Solving eq. (1.11) results in three eigenvalues, whereof one eigenvalue is double. 

 
s g1

s g2

s g3 2

Z Z

Z Z

Z Z

  (1.12) 

As described above, for each eigenvalue an eigenvector needs to be found. For 1  this results 
in  

 
g g g 11

g g g1 1 21

g g g 31

0
0
0

Z Z Z t
Z Z Z t
Z Z Z t

Z E t   (1.13) 

It is obvious, that there is no unique solution. In fact, every vector will be suitable, if their 
coefficients sum up to zero. 

 11 21 31 0t t t   (1.14) 

The same solution is obtained for 2   

 12 22 32 0t t t   (1.15) 

Insertion of 3  results in 

 
13

g3 3 23

33

2 1 1 0
1 2 1 0
1 1 2 0

t
Z t

t
Z E t   (1.16) 

In this case, too, a unique solution cannot be found. Besides an infinite number of possible 
solutions, e.g. eigenvectors whose coefficients are all equal, are suitable. 

 13 23 33t t t   (1.17) 

So, any arbitrary but invertible matrix that complies with eq. (1.14), (1.15) and (1.17) can be 
used as transformation matrix. In eq. (1.14) and eq. (1.15) two parameters can be chosen, in 
eq. (1.17) only one. Still, the eigenvectors of 1  and 2  must stay linearly independent to keep 
the transformation matrix invertible.  
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1.2 Calculation of powers in modal components 
The overall power of the electric energy system is calculated by the sum of the powers of each 
component in the system. In natural coordinates this is 

 T
a b ca b cS U I U I U I u i   (1.18) 

and in modal components 

 T
m m mS u i   (1.19) 

Keeping the power constant before and after the transformation between component systems 
results in 

 mS S   (1.20) 

Expression of the natural component system as a function of modal variables results in 

 
!T T T T

m m m mm m m m m mT u T i u T T i u i   (1.21) 

This is only possible, if  

 T
m mT T E   (1.22) 

and can be realized by choosing a suitable factor k in eq. (1.10). In this case, the transformation 
matrix is invariant to powers. It is important to mention, that most transformations are not 
invariant to powers. 

1.3 Most common modal components 
In practice, only a couple of modal component systems are used, because only they offer the 
aspired advantages for their specific field of application. Steady-state power system analysis is 
usually based on symmetrical components, while e.g. power electronics engineering often uses 
Clarke-Transformation for modelling and control purposes. Drives and generators – especially 
synchronous machines – are best described using Park-Transformation.

1.3.1 Symmetrical components 

Symmetrical components were introduced in 1918 by Charles Legeyt Fortescue. He proved, 
that any random unsymmetrical n-phase system can be expressed as a sum of n symmetrical 
separate components. Its transformation matrix  

 2
m

2

1 1 1

a a 1

a a 1

kT   (1.23) 

shows, that the eigenvector of 1  describes a symmetrical system, whose sequence 21 a a  
is in line with the natural phase sequence. It is therefore called “positive sequence system”. The 
eigenvector of 2  describes a system, whose sequence 21 a a  is counter-rotating. It is 
therefore called „negative sequence system“. The eigenvector of 3  shows no rotation. It is 
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therefore called „zero sequence system“. Due to its special behavior it is no longer indexed 3 
but gets the index 0 instead. If k is chosen to be one, this results in 

 

2

T2 1 2
SK SK SK

2

1 1 1 1 a a
1 1a a 1 1 a a
3 3

1 1 1a a 1

T T T   (1.24) 

Symmetrical component transformation shall now be applied to eq. (1.9). The source voltages 
are transformed into 

 

2
q

2 2
q,m q

1 a a 1
1 1 a a a 0
3

1 1 1 a 0

U

Uu   (1.25) 

and the neutral point voltage 

 

2

2
N,m N

N

1 a a 1 0
1 1 a a 1 0
3

1 1 1 1
U

U
u   (1.26) 

Finally, the result is 

 
q1 11

2 22

0 00 N

0
0 0
0

UU Z I
U Z I
U Z I U

  (1.27) 

Eq. (1.27) shows the special advantage of symmetrical components. In a non-faulty, balanced 
state, negative and zero sequence systems are passive and do not need to be calculated. This is 
due to the negative sequence system does not contain sources and NU  is only other than zero, 
if the sum of aI , bI  and cI  is other than zero. So, in a non-faulty state, it is sufficient to only 
consider the positive sequence system. Only in the case of faults or unbalanced operation points, 
consideration of negative and zero sequence systems is necessary. 

Another advantage of symmetrical components is, that they are invariant to the reference phase. 
In a balanced operation point negative and zero sequence systems are passive, resulting in 

 
1a 1

2 2
b 1

2
c 1

1 1 1

a a 1 0 a
0 aa a 1

GG G
G G
G G

  (1.28) 

This means, currents and voltages of the positive sequence system correspond to the currents 
and voltages of the reference phase “a”. Interpretation of symmetrical components is therefore 
very easy. Nevertheless, it is important to keep in mind, that  
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2

T 2 2
SK SK

2

1 a a 1 1 1 3 0 0
1 a a a a 1 0 3 0 3
1 1 1 0 0 3a a 1

T T E   (1.29) 

That means, electric power in natural coordinates is three times higher compared to the 
symmetrical components. Thus, using the given transformation matrix they are not invariant to 
power. To obtain a power invariant transformation system, it is necessary to set the factor 

3k . Unfortunately, this would lead to currents and voltages that are 3  times higher 
compared to the real system. Thus, invariance to the reference phase would be lost. That is why 
in practice, usually the reference phase invariant transformation is used. 

Eq. (1.27) shows that in a non-faulty state, positive, negative and zero sequence system, are 
decoupled and can be calculated independently.  

 
Fig. 2: graphical interpretation of symmetrical components 

The neutral point impedance is only considered in the zero-sequence system. It is multiplied 
with the factor 3 due to  

 N N N a b c N 0N 3U Z I Z I I I Z I  (1.30) 

  

qU 1U

1Z
1I

2U

2Z
2I

N3 Z 0U

0Z
0I

NU
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1.3.2 Diagonal components (Clarke-Transformation) 

Diagonal components or α,β,0 -components have been developed by Edith Clarke. With the 
factor 1k  he following transformation matrices are obtained 

 1
D D

1 0 1 2 1 1
1 3 11 0 3 3
2 2 3

1 1 1
1 3 1
2 2

T T   (1.31) 

The coefficients can be easily explained by putting the natural coordinate system into a 
complex-valued plane described by α - und β - vectors. 

 
Fig. 3: complex-valued reference frame of diagonal components 

The first column of DT  corresponds to the real part of the first column of SKT  and the second 
column of DT  corresponds to the imaginary part of the second column of SKT .  

Clarke-Transformation shall now be applied to eq. (1.9). With the source voltages 

 
q q,α

2
q,D q q q,β

12 1 1
1 0 3 3 a j
3

1 1 1 a 0 0

U U

U U Uu   (1.32) 

And the neutral point voltages 

 N,D N

N

2 1 1 1 0
1 0 3 3 1 0
3

1 1 1 1
U

U
u   (1.33) 

This results in the following equation system 

 
q,αα αα

β ββ q,β

0 0 N0

0
0

0

UU Z I
U Z I U

Z I UU

  (1.34) 

α

jβ

1

3j
2

3j
2

1
2
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The impedance matrix is identical to the symmetrical components. Nevertheless, two 
significant differences are obvious: 

 The transformation matrices are real-valued. 
 A single-component system description is not possible anymore. Generally, sources are 

active in the α - and the β - component. 

As already known from the symmetrical components, the transformation leads to three 
decoupled systems that can be analyzed independently. The neutral point impedance is again 
only considered in the zeros sequence system. 

 
Fig. 4: diagonal components 

1.3.3 Other transformation methods 

Symmetrical components and diagonal components have in common, that their transformation 
matrices have constant coefficients. This is not always advantageous, e.g. to model the rotor of 
a synchronous generator, it is more useful to apply a rotating transformation. This leads to a 
time-variant transformation matrix but also to constant modal values. This dq0-transformation 
has been developed by Robert H. Park.  

Finally, symmetrical components are only valid to describe steady-state, base frequency 
models. To model multi-frequency, dynamic performances, space-phasor transformations are 
needed, which again can be based on steady or rotating reference frames. In fact, it can be 
shown, that symmetrical components are a special case of the general space-phasor 
transformation.   

q,αU αU

αZ
αI

N3 Z 0U

0Z
0I

NU

βU

βZ
βI

q,βU
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1.4 Summary of transformation matrices 
 
Table 1: invariant to reference phase 
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Table 2: invariant to power 
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2 Modelling of equipment 
To model processes and calculate states of electric power systems, a systematic description of 
grid topology and the physical behavior of all the assets is necessary. Different approaches are 
available, especially graph theory and multipole theory. For the purpose of steady-state and 
quasi steady-state grid analysis, the latter offers a couple of advantages, namely: 

 Equipment matrices are usually smaller. 
 Input and output variables of the equipment equation systems are values that can be 

directly measured in real grids. Using graph theory, these original terminal values of the 
equipment need to be calculated first by superposing branch values. 

 It is not necessary to (arbitrarily) define directions of branches. Therefore, all solutions 
are unique.  

It is assumed, that all assets are built in a symmetric way. So, it is sufficient to only consider 
the positive sequence system. Symmetry can be achieved by appropriate construction of the 
asset or is suitably reached by twisting phases in case of overhead lines. 

Multipole theory considers each single piece of equipment a black box with a specific amount 
of connection points. At these terminals currents and voltages can be directly measured. By 
doing so, measurement possibilities are modelled very realistic, for the terminal values e.g. at 
both ends of a cable are exactly the values that can be measured in physical grids, too, whereas 
voltages and currents inside of the cable e.g. capacitive shunt currents, cannot be directly 
measured during system operation and need to be calculated. As a general convention, loads 
are counted positive. Therefore, currents always point into the asset at each terminal and 
voltages are pointing from phase to ground. For the purpose of steady-state grid analysis, most 
of the equipment can be described using a linear model due to there is a linear dependency of 
voltages and currents. Therefore, the physical behavior of the asset is described using a linear 
equation system. Its size depends on the number of terminals.  

In the following, nodal and terminal values need to be separated. Therefore, the index K is used 
to describe nodal values and index T is used to describe terminal values. 

2.1 Dipoles 
The general black box representation of a dipole is given in Fig. 5. 

 
Fig. 5: general model of a dipole 

The dipole is characterized by one pair of terminals, whereof one terminal is grounded and 
therefore not explicitly indexed. The terminal voltage AU  can be found between ground and 
the other terminal which is indexed A.  

AU

AI A
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Due to the linear dependency between terminal voltage and current, the behavior of the diploe 
can be expressed by a linear equation. 

 A A qAI Y U I   (2.1) 

The general equivalent circuit of the dipole can be found in Fig. 6.  

 
Fig. 6: general equivalent circuit of a dipole 

Dipoles are: 
 Synchronous and asynchronous machines  
 Grid equivalents 
 Loads 
 Shunt compensators (capacitor banks and reactors) 

In case of a synchronous machine 

 A
a d

1
j

Y
R X

  (2.2) 

and 

 q A pI Y U   (2.3) 

2.2 Quadrupoles 
The general black box representation of a quadrupole is given in Fig. 7.  

 
Fig. 7: general representation of a quadrupole 

The Quadrupole has two independent terminals (A and B), which results in a 2nd order linear 
equation system with the equipment admittance matrix T,BMY .  

 
A AA AB A

B BA BB B

T,BMT,BM T,BM

UI Y Y
UI Y Y

i Y u
  (2.4) 

Quadrupoles represent lines (overhead lines and cables) as well as two-winding transformers. 
These assets do not have internal sources, so modelling of a current source is unnecessary. In 

AU

AI A

qI AY

BU

BI B

AU

AIA
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the following chapters the coefficients of the admittance matrix of lines and transformers are 
derived. 

2.2.1 Lines 

The general equivalent circuit diagram of a line with concentrated parameters is given in Fig. 
8. Due to its form it is often called π-equivalent-circuit. 

 
Fig. 8: equivalent circuit diagram of a line 

The admittances are calculated as follows 

 
A B

M

1 j
2

1
j

Y Y G C

Y
R X

  (2.5) 

Application of 1st Kirchhoff‘s law at the left and right branching points results in 

 A A M M A

B M B M B

UI Y Y Y
UI Y Y Y

  (2.6) 

So, the coefficients of the admittance matrix of a line are found. AY , BY  and MY can be easily 
derived from the line length l and the resistance loads per unit length. 

 

R r l
X x l
C c l
G g l

  (2.7) 

2.2.2 Two-winding transformer 

The general equivalent circuit diagram of a two-winding transformer is given in Fig. 9. Due to 
its form it is often called T-equivalent circuit. Without loss of generality it is assumed, that the 
winding at terminal B is regulated and the elements of the equivalent circuit of winding B are 
related to the rated voltage of winding A. Back-transformation of the related voltages and 
currents is done using an ideal transformer with the transformation ratio  which is also used 
to model regulation, tap changing and phase shifting.  

BU

BI B

AU

AIA

AY BY
MY
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Fig. 9: equivalent circuit diagram of a two-winding transformer 

The admittances are calculated as follows 

 

A
A A

B
B B

M
Fe h

1
j

1
j

1 1
j

Y
R X

Y
R X

Y
R X

  (2.8) 

AI  and BI  can be expressed as a function of AU , BU and MU . 

 
A A A M

B B B M

I Y U U

I Y U U
  (2.9) 

Additional application of the 1st Kirchhoff’s law at the branching point in the equivalent circuit 
results in 

 A B M M 0I I Y U   (2.10) 

Eq. (2.9) and eq. (2.10) form a linear equation system 

 
A A A A

B B B B

MA B A B M

0

0
0

I Y Y U

I Y Y U
UY Y Y Y Y

  (2.11) 

Eq. (2.11) still does not have the aspired 2x2 form. With MU  the equation system still contains 
an inner voltage of the transformer which needs to be eliminated. Therefore, the last equation 
is solved for MU , so MU  can be expressed as a function of AU  and BU . 

 
A

A BM
BA B M

1 U
U Y Y

UY Y Y
  (2.12) 

Insertion of eq. (2.12) in the two upper equations of eq. (2.11) results in 

 
A B M A BA A

B BA B M A B B A M

1 Y Y Y Y Y UI

UI Y Y Y Y Y Y Y Y
  (2.13) 

BU

BI B

AU

AIA AY

MY

BY

BUMU

BI B



2.2  Quadrupoles 15 

 

It is aspired to calculate with the actual voltages and currents which means, the related voltages 
and currents need to be eliminated. Therefore, the transformation ratio needs to be integrated 
into the equipment admittance matrix. This is done by 

 B BU U   (2.14) 

with 

 
πjr,T,A 6

r,T,B
e

kU
U

  (2.15) 

 represents the change of voltage magnitude evoked by transformer tapping. It is related to 
the terminal A nominal voltage.  is the respective change in phase and k is a constant phase 
shift which is given by the transformer vector group. E.g. k = 5 at an Yd5 transformer. An ideal 
transformer has no losses, so 

 B BS S   (2.16) 

Therefore 

 B B
1I I   (2.17) 

Integration of eq. (2.14) and eq. (2.17) in eq. (2.13) results in 

 
A B M A BA A

2B BA B M A B B A M

1 Y Y Y Y Y UI
UI Y Y Y Y Y Y Y Y

  (2.18) 

So, the coefficients of the admittance matrix of a two-winding transformer are found. AY  and 
BY  are obtained from a short-circuit test 

 V,k
A B 2

r,T,A

1
2 3

P
R R

I
  (2.19) 

 
2 2

r,T,A V,k r,T,A
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  (2.20) 

MY  is obtained from an open-loop test 
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U
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  (2.21) 
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2.3 Sextupoles 
The general black box representation of a sextupole is given in Fig. 10. 

 
Fig. 10: general equivalent circuit diagram of a sextupole 

It is used to model three-winding transformers. Its physical behavior is described by a third 
order linear equation system. 

 
A AA AB AC A

B BA BB BC B

C CA CB CC C

I Y Y Y U
I Y Y Y U
I Y Y Y U

  (2.23) 

The coefficients of the equipment admittance matrix are calculated the exact same way as 
shown for the two-winding transformer. 

2.4 Octopoles 
The general black box representation of an octopole is given in Fig. 11. 

 
Fig. 11: general equivalent circuit diagram of an octopole 

It is used to model parallel systems of lines, e.g. overhead line systems that share the same 
poles. Although the phases are twisted to reach symmetry, there might be an inductive or 
capacitive coupling between these systems. The physical behavior of such parallel systems can 
be described by a forth order linear equation system. 

 

AA AB AC ADA A

BA BB BC BDB B

CA CB CC CDC C

DA DB DC DDD D

UY Y Y YI
UY Y Y YI
UY Y Y YI
UY Y Y YI

  (2.24) 
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The 2 2  submatrices on the main diagonal describe the behavior of the respective system as a 
quadrupole and the submatrices on the secondary diagonal the mutual coupling between these 
systems. 

In the same way overhead-lines carrying three or more systems can be modeled as 12-poles, 
16-poles and so on. Usually, the mutual perturbation is neglected and all systems of the 
overhead-line are modeled as quadrupoles. 
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3 Grid equation systems 
To efficiently perform power system analysis, a suitable equation system is needed, which 
allows to easily formulate the problem and model the underlying mechanisms. Therefore, a 
system state vector is aspired which has toe following properties: 

 unambiguous and consistent 
 lowest possible number of state variables 
 simple deduction of other information  

Possible system state vectors and mesh currents and nodal voltages. Only the latter fully meet 
the above requirements. 

In the following, different approaches to setup the grid equation systems are introduced. 

3.1 Multipole theory 
In chapter 2 the physical behavior of different types of assets is described. Up to now, the pieces 
of equipment are not connected to each other. If all equipment equation systems are put 
together, this results into a single linear equation system which has a block-diagonal form. 

 

A,1A,1 A,1

A,A, A,

A, +1A, +1 AA, 1 AB, 1

B, +1B, +1 BA, 1 BB, 1

A, +A, + AA, AB,

B, + BA, BB, B, +

UI Y

UI Y
UI Y Y
UI Y Y

UI Y Y
I Y Y U

,, ,

,, , ,

,, ,

  

  (3.1) 

In eq. (3.1) the composition is exemplarily given for  dipoles and  quadrupoles. Integration 
of sextupoles and octopoles is done analogously. The order of the assets or their terminals is 
not important. Nevertheless, the aspired block-diagonal form can only be achieved, if terminals 
belonging to the same asset are grouped together.  

For the demonstration grid given in Fig. 12 the resulting single-line diagram is shown in Fig. 
13 which also gives the enumeration of nodes and terminals.  

 
Fig. 12: demonstration grid 

 

~
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Fig. 13: single-line diagram with node and terminal enumeration 

Finally, this results in the full terminal admittance matrix T.fullY  

 

T T

T T

A M M
T,full

M B M

d

L

Y Y
Y Y

Y Y Y
Y Y Y

Y
Y

Y   (3.2) 

It can also be composed of a terminal admittance matrix containing only dipoles T,DPY  and a 
terminal admittance matrix containing all other remaining equipment T,remY . 

 T,rem
T,full

T,DP

Y
Y

Y
  (3.3) 

For the purpose of bus-oriented descriptions of the system state, usually only T,remY  is needed. 
Therefore, in the following, it is shorter written as TY . At each node, the terminal currents of 
the adjacent dipoles are summed up to a nodal current KI . This simplifies the calculation and 
it is not necessary to calculate with fictitious internal source currents.  

3.1.1 Description of topology 

The topology of a grid is described by logically connecting terminals to nodes. This is done 
using the nodal-terminal-incidence-matrix KTK . If a terminal is logically connected to a node, 
the respective coefficient of the matrix is set to „1“. All other elements of this column must 
then be „0“, because a terminal can and must only be connected to exactly one node. So the 
column sums of the nodal-terminal-incidence-matrix must be exactly „1“ while the row sums 
represent the degree of intermeshing of a node.  

The topology of the demonstration grid given in Fig. 12 is described by KT,fullK  

 KT,full

1 0 0 0 1 0
0 1 1 0 0 0
0 0 0 1 0 1

K   (3.4) 

Like the equipment admittance matrix it can also  be composed of a KT,DPK  containing the 
dipoles and KT,remK containing the connectivity of all other remaining assets. 

 KT,full KT,rem KT,DPK K K   (3.5) 

1UqI dY 2U LY

1
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AY BY

MY
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3U

31 25 3 4 6
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For the purpose of bus-oriented descriptions of the system state, usually only KT,remK  is needed. 
Therefore, in the following, it is shorter written as KTK . 

Switching equipment on or off is a change in its physical behavior and therefore must not be 
modeled by setting or deleting ones in KTK . It must be modeled by changing the respective 
coefficients of TY . On the other hand, switching a line from one busbar to another is in fact a 
change of the logical assignment of the terminal to a node. Therefore, this must be modelled by 
moving the „1“ in the respective column of KTK  from the old to the new node. The physical 
behavior of the line does not change, so TY  stays constant. 

3.1.2 Description of the system state 

The multipole approach uses the admittance form to describe the physical behavior of the 
equipment. It is therefore a nodal based method. Thus, the nodal voltages Ku  form the system 
state vector. For example, the terminal voltages Tu can easily be expressed. 

 T
KTT Ku K u   (3.6) 

Furthermore, the physical behavior of the assets is known and can be described with a single 
linear equation system according to eq. (3.1). 

 TT Ti Y u   (3.7) 

Finally, 1st Kirchhoff‘s law, says, that the sum of currents at each node has to be zero. 

 KTK Ti K i 0   (3.8) 

In eq. (3.8) the nodal current vector Ki  is introduced. It summarizes all the dipole currents that 
are connected to the respective nodes. 

 KT,DPK T,DPi K i   (3.9) 

Insertion of eq. (3.6) into eq. (3.7) results in 

 T
T KTT Ki Y K u   (3.10) 

Insertion of eq. (3.10) into eq. (3.9) and solving for the nodal currents leads to  

 T
TKT KTK Ki K Y K u   (3.11) 

Eq. (3.11) is again written in admittance form, which was already used to describe the physical 
behavior of the equipment. Nevertheless, all terminal voltages and currents have been replaced 
by nodal voltages and currents and the description of the physical behavior and topological 
information are merged into one single equation system. Introduction of the bus admittance 
matrix KKY   

 T
KK TKT KTY K Y K   (3.12) 

leads to a further simplification 

 KKK Ki Y u   (3.13) 

If dipoles were not expressed as nodal currents, then Ki  would only contain the inner source 
currents of the dipoles and the dipole admittances would be part of KKY . 
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KKY  has the following properties: 

 quadratic 
 sparse 
 symmetric, if there are no phase shifting transformers in the grid 
 singular, if there are no shunt elements in the grid. Even with shunt elements, the 

determinant is close to zero. 

3.1.3 Deduced information 

As described above, nodal voltages are particularly suitable to describe the system state, due to 
all other values can be easily derived. Table 3 gives an overview of a couple the most needed 
information of interest. 
Table 3: derived information 

description formula 

terminal voltages T
KTT Ku K u   

nodal currents KKK Ki Y u   

terminal currents T
T T KTT T Ki Y u Y K u  

nodal powers KKK K K K K3 3s U i U Y u   

terminal powers TT T T T T3 3s U i U Y u   

grid losses V K TS s s   

 

3.2 Graph theory 
Using graph theory, equipment is not modeled as a single piece of asset as described in 
chapter 2. Instead, the equipment is decomposed into several branches, each containing only a 
single admittance and possible a parallel current source. 

 

Fig. 14: general presentation of a branch 

This results in the branch equation 

 Z Z qZI Y U I   (3.14) 

Similar to the multipole approach all branches are enumerated and their equations are joined 
into a single, decoupled equation system. 

qI ZY ZU

ZI
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q

  (3.15) 

For the demonstration grid given in Fig. 12 this results in the following equivalent circuit 
diagram 

 
Fig. 15: equivalent circuit diagram in graph theory 

The arbitrary chosen direction of the branch currents depicts the direction of the entire branch. 
In multipole theory, this step is unnecessary, due to the load counting system all terminal 
currents automatically point into the asset at every terminal. In doing so, a potential source of 
error is avoided. 

According to the branch enumeration the following branch admittance matrix results 

 

T

M

Z A
Z,full

Z,DP B

d

L

Y
Y

Y
Y

Y
Y

Y
Y Y   (3.16) 

Similar to the multipole theory, it can be divided into the branches of the dipoles and all other 
branches. Again, at each node, the currents of the adjacent dipoles are summed up to nodal 
currents. 

3.2.1 Topology description 

Grid topology is described by logically connecting branches to their adjacent nodes under 
consideration of the branch direction. This is done using the node-branch-incidence matrix KZK
. If a branch is connected to a node but points away from it, a “1” is written at the respective 
position in KZK . If a branch is connected to a node and points towards it, a “–1” is written at 
the respective position. In doing so, the ground is neglected. 

For the demonstration grid given in Fig. 12 the full topological matrix is 

 KZ,full KZ KZ,DP

1 0 0 0 1 0
1 1 1 0 0 0

0 1 0 1 0 1
K K K   (3.17) 
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An initial error proof of KZK  is impossible due to the different signs of the coefficients. 
Nevertheless – similar to the multipole approach – switching should not be modeled by 
removing ones from the matrix. As switching is a change in the physical behavior of the branch, 
this should again be modeled by changing and maybe the source current the admittance of the 
respective branch. 

3.2.2 Description of the system state 

The derivation of the grid equation systems is similar to the multipole approach. Due to the 
admittance form of the branch description, graph theory also is a nodal based approach. The 
system state vector therefore again consists of the nodal voltages Ku . The can be used to simply 
calculate the branch voltages 

 T
KZZ Ku K u   (3.18) 

Also, modelling of the physical behavior of the branches is done analogously. 

 ZZ Zi Y u   (3.19) 

The branches considered in eq. (3.19) do not contain any sources, due to these are typically 
only present in dipoles.  

Finally, using Kirchhoff’s first law, again nodal currents are introduced which sum up to zero 
together with the adjacent branch currents. 

 KZK Zi K i 0   (3.20) 

where the nodal currents can be expressed by the dipole currents, as described above 

 KZ,DPK Z,DPi K i   (3.21) 

Combining eq. (3.19) and eq. (3.20) results in 

 T
Z KZZ Ki Y K u   (3.22) 

Insertion of eq. (3.22) in eq. (3.20) and solving for the nodal current leads to 

 T
ZKZ KZK Ki K Y K u   (3.23) 

and to the already well-known eq. (3.13) with the same bus admittance matrix 

 T
KK ZKZ KZY K Y K   (3.24) 

Both approaches lead to identical solutions. Nevertheless, the multipole method is superior due 
to bypassing any arbitrariness which results from the directed graph. Furthermore, terminal 
values (e.g. currents and powers at both ends of a cable) exist in the real world and are actually 
measurable while branch values are mostly fictitious. An additional calculation step is needed 
to infer from the branch values to measurable values. 
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3.3 Direct arrangement of the bus admittance matrix 
Besides the calculation according to eq. (3.12) KKY  can be directly built manually e.g. for the 
calculation of small grids. 

 Coefficient 
,i j

y  represents the admittance between the nodes i and j. If there is no direct 
connection between i and j, 

,i j
y  is zero. 

 The elements on the main diagonal 
,i i

y  are calculated by building the negative sum of 
line i and subtracting the shunt elements at node i. 

The bus admittance matrix of the demonstration grid shown in Fig. 12 is given below 

 
T T

KK T T M A M

M M B

0

0

Y Y
Y Y Y Y Y

Y Y Y
Y   (3.25) 

The same result is obtained by solving eq. (3.12). 

 

T T

T T
KK

A M M

M B M

T T

T T M A M

M M B

1 0 0
1 0 0 0

0 1 0
0 1 1 0

0 1 0
0 0 0 1

0 0 1

0

0

Y Y
Y Y

Y Y Y
Y Y Y

Y Y
Y Y Y Y Y

Y Y Y

Y

  (3.26) 

or eq. (3.24) 
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M
KK
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T T

T T M A M

M M B

1 1 0
1 0 0 0

0 1 1
1 1 1 0

0 1 0
0 1 0 1

0 0 1

0
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Y
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Y Y
Y Y Y Y Y

Y Y Y

Y

  (3.27) 
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4 Power flow calculation 
Power flow calculation is – as well as the state estimation approach – a method of grid state 
identification. That means, its task is to infer on the grid state, namely to calculate nodal 
voltages, based on a set of given input variables. The general procedure of grid state 
identification is given in Fig. 16. 

 
Fig. 16: general procedure of grid state identification 

The available methods of grid state identification differ in their algorithms and the available or 
used set of input parameters. Therefore, they differ in their fields of application as well and are 
either used for grid planning or grid operation. 

The power flow calculation infers on nodal voltages exclusively based on given nodal active 
and reactive powers as well as some possibly given reference nodal voltages. It is mostly used 
for offline grid analysis (e.g. grid planning) and is the basis for contingency analyses during 
system operation.  

To obtain information on the grid state, the power flow approach needs to solve a quadratic 
equation system. The size of the equation system grows with the number of nodes in the grid. 
Usually, the problem cannot be solved analytically, thus numerical approaches to approximate 
the solution are applied. For this purpose, fixed-point and tangential approaches are available. 
Due to their better convergence, the latter are superior, nevertheless, fixed-point approaches 
offer several advantages, too.  

4.1 Node types and voltage dependency of loads 
Each node can be assigned four different values: active and reactive nodal power as well as the 
nodal voltage separated into either real and imaginary part or magnitude and angle. Depending 
on the available information, different node types are identified. 
Table 4: summary of node types 

node type known values calculated values amount 
load nodes P, Q U, δ > 90 % 
Generator nodes P, U Q, δ < 10 % 
slack node U, δ P, Q 1 

 

Most of the nodes are load nodes, where active and reactive powers are given. Besides that, 
there are some generator nodes at which active powers and a reference voltage are given. This 
is in line with the behavior of big power plants that supply active power according to their 
schedule and offer voltage control. Active and reactive power balancing is granted by a so called 

grid state
identification

Ku

grid data

measurands
pseudo-measurands

Set points
assumptions
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slack node which additionally defines a reference voltage angle. This is necessary, due to power 
flows on the lines are not defined by the absolute value of the nodal voltage angles but instead 
by the differences of voltage angles at neighboring nodes.  

Theoretically, a fourth node type is thinkable, where Q and δ are given and U and P need to be 
calculated. There is no physical equivalent to this node type which is why it is usually not used. 
Nevertheless, it can be a useful tool e.g. for distributed slack calculation, for power flow 
optimization problems or if reference values for voltage and angle are intended to be given at 
different locations. Exactly on node must provide a reference angle to make the equation system 
solvable. If the system does not have any shunt elements, then at least one voltage reference is 
also necessary. 

Active and reactive powers at load nodes may depend on the voltage magnitude. Their 
characteristic can be expressed by an exponential function. 

 0
0

p
UP P
U

  (4.1) 

 0
0

q
UQ Q
U

  (4.2) 

In Fig. 17 three different special cases are shown: 

 p, q = 0: active and reactive power are constant and do not depend on the voltage 
magnitude (e.g. if it is a measured value or the load is power controlled) 

 p, q = 1: active and reactive currents are constant (e.g. a current controlled load) 
 p, q = 2: active and reactive powers are proportional to the square of the voltage, i.e. the 

admittance of the load is constant 

In practice, the values of p and q are between 1 and 2.  

 
Fig. 17: voltage dependency of active and reactive powers 
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4.2 Gauss-Seidel iteration 
The Gauss-Seidel iteration is a fixed-point approach. It is mainly based on alternatingly solve 
the power equation  

 1
K K K

1
3

i U s   (4.3) 

and the current equation 

 KK K KY u i   (4.4) 

until the result does not change any more.  

The slack voltage sU  is given and therefore already known. It can be removed from the solution 
vector. Hence, the current equation system is separated into the slack equation and the 
remaining equations. 

 sss sr s

rs rr r r

U IY Y
u iY Y

  (4.5) 

The lower part of eq. (4.5) is solved for the remaining voltage vector ru  

 1
rr rsr r sUu Y i Y   (4.6) 

Thereby, ri  is the remaining current vector of Ki  without the current at the slack node. 

 s
K

r

I
i

i
  (4.7) 

The voltage vector is obtained iteratively. In each iteration step  a new remaining current 
vector is calculated based on the voltage solution of the last iteration step 

 1
r, r, 1 r, 1

1
3

i U s   (4.8) 

Using these new currents, the voltage vector is updated. 

 1
rr rsr, r, sUu Y i Y   (4.9) 

In eq. (4.9) generator nodes are not considered. That means, the voltage ,gU  at the generator 
node g differs most likely from the reference value ,refgU . Therefore, the entire vector r,u  
needs to be corrected. This is done by further decomposing the (remaining) equation system 
from eq. (4.5) into generator and load nodes 
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  (4.10) 
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Assuming that the newly calculated voltage angle of the generator node is a better 
approximation than the last one, only the magnitude of the voltage is set back to the reference. 

 ,j
, ,ref e gU

g gU U   (4.11) 

Changing the voltage magnitudes at the generator nodes has an impact on the voltages of at 
least all the surrounding load nodes l. They can be calculated by the lower equation system of 
eq. (4.10). 

 1
ll lg, ls,l, l, g, sUu Y i Y u Y   (4.12) 

Additionally, the reactive power output of the generator node needs to be modified based on 
the corrected generator and load voltages.  

 
s
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l,

3 Im
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u

  (4.13) 

The resulting vectors of nodal voltages and powers can now be used again in eq. (4.8) to 
calculate the next iteration step. The powers of the load nodes depend on p and q. If both p and 
q are zero, rs  is constant. 
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  (4.14) 

The iteration process is repeated until the maximum voltage difference between two iteration 
steps is lower than a predefined threshold . 

 r, r, 1max u u   (4.15) 

For the first iteration step, nominal voltages of the nodes can be used as initial guess 0u . This 
assumption is called a flat-start. A better initial guess can be achieved if the loads are expressed 
as equivalent admittances 

 L,
L, 2

K,n,3
i

i
i

S
Y

U
  (4.16) 

and integrated on the main diagonal of KKY  

 KK,L KK LY Y Y   (4.17) 

Using the estimated generator currents 

 1
K,n,gK,g K,g

1
3

i U s   (4.18) 
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an initial guess 0u  can be obtained which already includes the effects of phase shifting 
transformers as well as bulk load and generation. This can help to reduce the number of needed 
iterations.  

 1
KK,L0 K,gu Y i   (4.19) 

After the iteration has converged, the slack current has to be calculated using the slack line in 
eq. (4.5). Finally, the voltage and current vectors need to be reassembled 

 s ss srs rI Y U Y u   (4.20) 

Now, the slack power can be calculated 

 ss s3S U I   (4.21) 

The flow chart of the Gauss-Seidel iteration is given in Fig. 18. 

 
Fig. 18: flow chart of the Gauss-Seidel iteration 

The most important properties of the Gauss-Seidel iteration are: 

 Large radius of convergence, that means, even if the initial guess is bad, the approach 
is still able to find a proper solution 

 Easy to implement 
 The system matrix rrY  is constant. That means it is sufficient to define and invert it 

once prior to the iteration which saves computation time. 
 Low convergence speed, which means a lot of iterations are needed to find a proper 

solution. 

Initial guess

Calculation of
nodal currents

Calculation of
nodal voltages

Correction of generator
and load voltages

Correction of
nodal powers

r, r, 1max u u Calculation of
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 The number of needed iterations depends strongly on the grid size and increases with 
the number of nodes. 

 Implementation of generator nodes is laborious. 

Especially in large grids, the Gauss-Seidel-method often fails to converge within an acceptable 
amount of time. That is why nowadays it is usually not used anymore. Instead, the superior 
Newton-Raphson-approach is applied.  

4.3 Newton-Raphson-approach 
In contrast to the Gauss-Seidel-iteration, the Newton-Raphson-approach is a tangential method 
to find zeros of a non-linear function f x . Therefore, the function is linearized at an initial 
guess 0x  and the aspired zero position is assumed to be the zero position 1x  of the tangent. 
The so found solution 1x  is a better solution than 0x  and therefore used as new guess for the 
zero position of f x  which needs to be linearized at the new solution again until no further 
improvement can be seen. For a one-dimensional function, the procedure is shown in Fig. 19.  

 
Fig. 19: iteration step of a tangential zero search 

For the purpose of power flow calculation, the non-linear function is the power equation which 
has to be reformulated as a zero search. Therefore, nodal powers that are calculated as a function 
of nodal voltages 

 KKK,calc K K3s U Y u   (4.22) 

are supposed to correspond to the actual (given) nodal powers K,acts .  

 
!

K,calc K,acts s   (4.23) 

So, the power flow calculation can be defined as the zero search of the difference function of 
the calculated and actual nodal powers.  

 K K,calc K,actΔs s s 0   (4.24) 

By doing so, it is necessary to consider that K,acts  probably shows a voltage dependent 
characteristic and needs to be updated in each iteration step (see Fig. 17) along with the 
improvement of the voltage vector. 
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Due to the k complex-valued nodal voltages consist of two independent values (magnitude and 
phase or real and imaginary part), 2 k equations are needed to uniquely solve the problem. 
Therefore, eq. (4.24) is separated into active and reactive power. 

 
KKK K K,actK

K,actK KKK K

ReΔ
3

Δ Im

U Y u pp
qq U Y u

  (4.25) 

The linearization of eq. (4.25) needs to be done in each iteration step  by building a Taylor-
series expansion. 

 1 T
1
Δff x f x x

x
  (4.26) 

Δx  is the difference vector, which needs to be added to x  to get a better guess of the zero 
position.  

 1 Δx x x   (4.27) 

Application of the Taylor-series expansion to the power flow equation results in 

 KΔs f x   (4.28) 
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Reformulation results in 
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Or in abbreviated diction with the Jacobian J and the power differences Δs 

 1 1Δ ΔJ x s   (4.31) 

The Jacobean depends on the chosen reference frame and consists of four submatrices, which 
are further described in the following. 
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  (4.32) 

4.3.1 Newton-Raphson in Cartesian coordinates 

In Cartesian coordinates x consists of the real and imaginary part of the nodal voltages  
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u u
x u u

  (4.33) 
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with the bus admittance matrix 

 KK jY G B   (4.34) 

The real and imaginary part of the nodal currents can be calculated. To calculate nodal powers, 
the complex-conjugate of the nodal currents are needed which is why the imaginary part is 
already multiplied by -1.  
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  (4.35) 

So, the nodal powers result in  
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To linearize eq. (4.36), four auxiliary matrices are built 
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To include the dependency of the (given) nodal active and reactive powers on the voltage 
magnitudes, the diagonal matrices of the auxiliary vectors 5h , 6h , 7h  and 8h  have to be 
considered as well. Their coefficients are calculated as follows 
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This now results in the Jacobian 
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Thus, in Cartesian coordinates, eq. (4.31) has the following form 
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At the slack node, the voltage does not change in any iteration step. This means  
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Eq. (4.41) can be inserted into eq. (4.40). Therefore, the active and reactive power difference 
equations are removed from the original equation system and replaced by the above constraints. 
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  (4.42) 

Setting the remaining elements of the two slack columns to zero has no effect on the solution 
of the equation system, due to ,rΔ sU  and ,iΔ sU  are zero due to the constraints. Modification of 
these elements is actually not necessary, but making the Jacobian as sparse as possible may 
speed up the calculation process and might therefore be advantageous.  

In Cartesian form, generator nodes need to be implemented into the equation system in the same 
way as described for the Gauss-Seidel iteration, which means after the update vector is 
calculated, it is necessary to reset the voltage magnitude to the reference value and recalculate 
the reactive power output of the generator. For this reason, usually polar coordinates are used 
to calculate the power flow. Nevertheless, Cartesian coordinates still provide some useful 
advantages: 

 Simple calculation of the Jacobian. 
 The Jacobian is based on gradients of quadratic instead of trigonometric functions. 
 Convergence radius is marginally larger. 



36 4  Power flow calculation 

 

4.3.2 Newton-Raphson in polar coordinates 

In polar coordinates the state vector x consists of the phase angle and the magnitude of the nodal 
voltages 

 K

K

δ
x

u
  (4.43) 

Using 

 je i
iiU U   (4.44) 

and the coefficients ,i jY  of the bus admittance matrix 
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, , e i j

i j i jY Y   (4.45) 

Nodal power can be calculated as follows 
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  (4.47) 

Linearization of eq. (4.46) and eq. (4.47) results in  
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Using the diagonal matrices K,calcP  and K,calcQ  obtained from the calculated nodal powers in 
eq. (4.46) and eq. (4.47), the auxiliary matrix 
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and the diagonal matrices p,K,calcP  und q,K,calcQ  of the derivation of the voltage magnitude 
dependency of the nodal active and reactive powers 
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the submatrices of the Jacobian can be built 
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In polar coordinates eq. (4.31) has the following form 
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At the slack node, voltage magnitude and phase angle do not change 
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Similar to the Cartesian coordinates, these constraints are implemented into the equation system 
by removing the slack lines and replacing them by the constraints. At the generator nodes, only 
the voltage magnitude is constant. That means, only in the lower half of the equation system 
the lines that correspond to a generator node are removed and replaced by the constraint 

 Δ 0gU   (4.54) 

So, the decisive advantage that makes polar coordinates superior to the other approaches is the 
extremely simply way of implementing generator nodes into the equation system. 

In eq. (4.50) and eq. (4.51) all summands building the submatrices N and L are multiplied by 
1

KU  from the right. To save some computational effort this multiplication can be avoided, if 
the voltage magnitudes in the solution vector are related to the voltages of the previous iteration 
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step. In this case, calculating the improved guess according to eq. (4.27) requires an additional 
multiplication of the voltage magnitude changes with KU . 

4.3.3 Initial guess 

Other than the Gauss-Seidel iteration, convergence of the Newton-Raphson-approach strongly 
depends on the initial guess. If there are no phase-shifting transformers in the grid, usually the 
flat-start will lead to a good solution again. In other cases, more suitable initial guesses can be 
found by one of the following methods: 

If there are phase-shifting transformers in the grid which do not drive a circular flow, that means 
there are no parallel branches to the transformer, a suitable initial guess can be found by solving 
the current equation system for the unloaded grid with all shunt elements deactivated. 
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In eq. (4.55) all voltages except sU  are unknown and all currents except sI  are known (set to 
zero). The needed voltages can be obtained by solving eq. (4.6). The resulting voltage vector 
contains phase-shifting and voltage regulation of the transformers. This guess is therefore closer 
to the actual voltages than the flat-start. 

If there are parallel branches to the phase-shifting transformer, it will drive a circular flow. In 
this case the described procedure cannot be applied, due to the resulting voltage will be too low. 
In this case, it is more productive to express the nodal powers as equivalent admittances. 
Assuming, that the actual voltage magnitude is close to the nominal voltage, the equivalent 
admittance at node i can be calculated 

 L, 2
n

i
i
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U

  (4.56) 

The equivalent admittances are then implemented into the bus admittance matrix 

 KK,L KK LY Y Y   (4.57) 

In this case, it is better not to remove the shunt elements. The initial voltage guess can now be 
calculated using eq. (4.55) again.  

If the Newton-Raphson-algorithm still does not converge, the initial guess can be further 
improved by calculating one iteration step of the Gauss-Seidel approach and using its results. 
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4.3.4 Flow chart of the iteration 

The iteration process is similar to the Gauss-Seidel-iteration. After choosing a suitable initial 
guess, first the right hand side of eq. (4.31) is calculated and afterwards the Jacobian is built 
depending on the chosen coordinate system. The slack and generator node constraints are now 
implemented into the equation system. Now, an update vector is calculated which leads to a 
new and improved guess of the nodal voltages. If the elements of the update vector are smaller 
than a predefined threshold, the iteration is over, because the solution is sufficiently close to the 
zero position. Otherwise, an additional iteration step is needed. The flow chart is given in Fig. 
20. 

 
Fig. 20: flow chart of the Newton-Raphson-approach 

 

The most important properties of the Newton-Raphson method are: 

 Small convergence radius, that means, if the initial guess is bad, the approach will 
diverge or find an invalid solution 

 High convergence speed, that means, only a few iterations are needed to find a 
sufficiently good solution. 

 The Jacobian needs to be set up entirely new in each iteration step.  
 The number of needed iterations is independent from the grid size and should be around 

three to five iterations depending on the loading of the grid. 
 Easy implementation of generator nodes 

Initial guess

Construction of Jacobian
and right hand side

Integration of the slack
and the generator nodes

Calculation of the
improvement vector

Calculation of the new
system state

1max x x Finalization
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Programming of the setup of the Jacobian needs to be as efficient as possible, due to this step 
is computationally intense. To save some time, the Jacobian may be newly calculated e.g. only 
every second iteration step. Nevertheless, this will lead to the loss of optimal convergence and 
may require additional iterations. 

4.4 Decoupled power flow calculation 
Another possibility to save time building the Jacobian is to exploit simplifications that can be 
applied due to special grid properties. This may result in a slightly different result compared to 
the entire power flow calculation, but if applied correctly, the deviation stays sufficiently small, 
such that the gained calculation speed is more advantageous than the loss of accuracy. 

The R/X-ratio in the extra-high voltage level is around 1:10, which means, the grid can be 
assumed to be entirely inductive and the ohmic part can be neglected. In eq. (4.45), this means, 
that the phase angle α of the admittance is π/2. Compared to that, the phase angle difference of 
the nodal voltages is rather small. In eq. (4.46) and eq. (4.47) this results in 
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This simplification leads to the following Jacobian 
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with its submatrices 
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The power flow equation system is now decomposed into two smaller and independent equation 
systems. 
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H δ p
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  (4.61) 

They still need to be solved iteratively because the Jacobian depends on the guess of the 
voltages.  

4.5 Fast decoupled power flow (DC power flow) 
The fast decoupled power flow, which is also called DC power flow, additionally assumes, that 
the related voltage magnitudes at each nodes are constant and match e.g. with the nominal 
voltage. Using this assumption, KΔu  does not need to be calculated any more. Furthermore, H 
becomes constant, due to H does also not depend on phase angles. Thus, iterations are not 
needed anymore. The resulting nodal voltage phase angle can directly be obtained by solving 
the linear equation system 
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 K KH δ p   (4.62) 

Still, at the slack node, the reference angle needs to be set manually. If it is zero, the slack line 
and column simply can be removed from the equation system. 

Due to the many simplifications and assumptions, the result of the DC power flow differs 
tremendously from the full power flow result. It is therefore only applied, if a very large number 
of power flow calculations need to be performed (e.g. in Monte-Carlo-simulations or reliability 
studies), in studies, that do not focus primarily on the grid result (e.g. market simulations) or to 
estimate phase angles as an initial guess for the Newton-Raphson-approach. For the purpose of 
grid planning and especially grid operation, its results are much too defective. 

The above mentioned assumptions for the decoupled and the fast decoupled power flow 
calculation are only valid for the extra-high voltage level. In the high voltage level or below, 
the R/X-ratio increases. Thus, the calculation error increases that much, such that the results 
cannot be used. 
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5 State Estimation 
Similar to the power flow calculation, the state estimation is used to find a consistent grid state, 
i.e. a set of nodal voltages. It is used in system operation to observe the grid and merge the 
measured information into a consistent system state. Therefore, not only nodal active and 
reactive powers are used as input parameters, but every possible and available measurement 
from the grid as well as pseudo measurement. The estimated grid state 
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is supposed to be as close to the actual grid state as possible 
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This can be achieved by using a weighted least-squares approach originally described by Gauss. 
The estimated grid state is the basis for all other grid calculations, e.g. contingency analysis or 
short-circuit calculations and is used by the operational staff for decision-making.  

In a conventional SCADA-system measured values are typically nodal active und reactive 
powers, terminal active and reactive powers, nodal voltage magnitudes as well as nodal and 
terminal current magnitudes. They can be merged to a measurement vector mz . 

 
TT T T T T T T

m K,m K,m T,m T,m K,m K,m T,mz p q p q u i i   (5.3) 

If there are phasor measurement units (PMUs) available in the grid, phasor information can be 
additionally included in the state estimation process. Nowadays, although PMUs are installed 
they are typically still not used for operational purposes, due to phase angle differences are 
quite small in highly meshed grids and a small phasor measurement error may lead to high 
deviations in the active power flow estimation and therefore do not help to improve the 
estimation result. The same applies to currents. While active and reactive powers can be 
measured with correct sign, information of flow direction (load or generation) is lost, if only 
current magnitudes are measured. Hence, they may have bad influence on the convergence of 
the state estimation. So, they are usually not used. In fact, the measurement vector in the extra-
high voltage level consists of about 75 % terminal powers, 20 % nodal powers and 5 % nodal 
voltage magnitudes. 

5.1 Measurement error and redundancy 
While PMUs offer a precise and synchronized measurement, conventional SCADA-technology 
cannot determine the measured information simultaneously and without error. Generally, all 
measurands (even those of PMUs) are superposed by inaccuracies. That means, the measured 
value mz  is the sum of the actual value z and the error Δz. 

 m Δz z z   (5.4) 

Δz may consist of a systematic and a stochastic component. In the following, it is assumed, that 
the systematic part is sufficiently eliminated e.g. by calibration such that only the stochastic 
part needs to be considered. It depends on the chosen measurement process, the measured value 
and the quality of the measurement device. It is further assumed, that the measurement error is 
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normally distributed. In Fig. 21 the probability density functions of two measurement devices 
with different quality are shown. 

 
Fig. 21: normally distributed measurement error 

The probability function of a normal distribution is  
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1Δ e
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σ is the standard deviation of the normal distribution function. The higher the quality of the 
measurement device, the lower the standard deviation of the error. 

To obtain a consistent grid state out of the bunch of faulty measurement information, and to 
make this grid state close to the actual one, deviations and even outages of measurement devices 
need to be compensated. To do so, redundant measurement is necessary, that means, there are 
more measurement devices in the grid than actually needed to describe the system state. 
Furthermore, it is assumed, that all measurands and thus all measurement errors are 
independent. Similar to the power flow approach, the system state is described by the complex-
valued nodal voltage vector. So, for a grid with k nodes, 2 k system variables (magnitude and 
phase angle or real and imaginary part) need to be calculated.  

The relation of the number of measurements m and the number of system variables is used to 
define the amount of redundancy 

 1
2
mr
k

  (5.6) 

To compensate the outage of a measurement device, a redundancy of r > 1 is aspired. That 
means, the number of measurement devices is theoretically four times higher than the number 
of nodes. In the European transmission system, redundancy is even higher, due to all equipment 
is fully observed. This includes pseudo measurement which are pieces of information that are 
well-known although they cannot or do not need to be actually measured. For example, nodal 
powers of a fictitious node e.g. branching points of overhead lines are always zero and thus 
known without measuring. Pseudo measurement can be included into the state estimation 
process with a fictitious, high measurement quality. 
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5.2 State estimation with linear measurement model 
If there is an entirely linear dependency of measurands and system variables, the measurands 
can be expressed using a linear equation system. 

 z H x   (5.7) 

H is the measurement model matrix and has the dimension 2m k . Its coefficients are constant 
and do not depend on estx . Due to the above-mentioned high redundancy, the equation system 
is overdetermined. It contains more equations than system variables. Such a measurement 
model can be found in DC grids, if only currents and voltages are used as measurands. In three-
phase AC systems a linear measurement model can be achieved, if solely PMU data is used, 
such that the estimation is based on complex-valued currents and voltages. As soon as powers 
or magnitudes are used as measurands, the measurement model is non-linear.  

According to eq. (5.4) and eq. (5.7) the measured values can be expressed as a function of the 
system state and the measurement error. 

 m est Δz H x z   (5.8) 

The task of state estimation is to find a state vector estx  which minimizes the error in eq. (5.8)  

 m estΔz z H x   (5.9) 

By doing so, the respective quality of the measurement device shall be considered. That means 
a high quality measurand shall be considered more reliable than the information obtained from 
a device with less quality. This can be achieved b relating the error to the standard deviation of 
the device so it gets weighted.  

 1 1
g m est m,g g estΔ Δz S z S z H x z H x   (5.10) 

with the weighting matrix S 
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The sum of the squared errors 
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needs to be minimized and can therefore be expressed using eq. (5.10)  
TT T T T

g g g m,g g est m,g g est m,g est g m,g g est

T T T T T T
m,g m,g m,g g est est g m,g est g g est

Δ ΔF z z z H x z H x z x H z H x

z z z H x x H z x H H x
 (5.13) 

To find the minimum of gF its first partial derivations are set to zero. 
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x x
  (5.14) 

For the purpose of better understanding, the partial derivations are done separately for each 
summand. For the first summand, this leads to 
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due to it only contains measured information and does not depend on estx . The derivation of 
the second term leads to 
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Analogously, for the third summand 
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  (5.17) 

Using the product rule, derivation of the fourth summand leads to  
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  (5.18) 

gF  is a scalar value. That means, its transposed is again gF . The same can be applied to the 
partial derivations. Thus 
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and 
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So, eq. (5.14) can be reformulated 
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Due to 
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  (5.22) 

eq. (5.22) is only true, if 

 T T
g g est g ,m gH H x H z   (5.23) 

or in more detail 
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  (5.24) 

Eq. (5.24) is the Gaussian weighted normal equation with the covariance matrix 1R   

 1 1 1R S S   (5.25) 

The system matrix A has the dimension 2 2k k . It is positive definite and symmetric. In 
opposition to the non-linear measurement model, A is of rank 2k as soon as at least one voltage 
measurement is included. Eq. (5.24) can directly be solved for estx . The resulting solution is 
the estimated, consistent system state, which best fits the measured values under consideration 
of their different qualities.  

5.3 State estimation with non-linear measurement model 
The linear measurement model cannot be applied to an electric power supply system using 
conventional SCADA technology. On the one hand, this is due to the fact that phase shifts 
occur, and on the other hand due to the necessity of powers and voltage magnitudes in the 
measurement vector. Eq. (5.7) therefore needs to be rewritten more generally 

 z h x   (5.26) 

Accordingly, eq. (5.8) results in 

 m est Δz h x z   (5.27) 

and eq. (5.9) respectively 

 m estΔz z h x   (5.28) 

Similar to the linear measurement model, the errors are again related to the standard deviation 
to make high quality measurands more important during the estimation process. 

 1 1 1
g m est m,g g estΔ Δz S z S z S h x z h x   (5.29) 

The weighted squared sum of gF  results in 
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  (5.30) 

To minimize the error function, all partial derivations need to be built and set to zero again.  
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Similar to the linear measurement model, the construction of the partial derivations is done 
separately for each summand. Derivation of the first term results in 
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Due to it is again independent from estx . Derivation of the second term results in 
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T
gH  is the transposed Jacobian of esth x . It does not depend on the system state, thus the 

coefficients are constant.  

Using the product rule, derivation of the third term results in 
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  (5.34) 

In conclusion the derivation results in 
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and accordingly 

 T T
g g est g g,mH h x H z   (5.36) 

Eq. (5.36) still is non-linear due to its dependency on esth x . Thus, the search for the optimal 
estimated system state has to be done iteratively using e.g. a tangential approach. To do so, 

esth x  is expressed by a Taylor series expansion in each iteration step μ.  

 g est,
g est, 1 g est, est, 1 g est, g, est, 1T
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Δ Δ

h x
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x
  (5.37) 

Insertion of eq. (5.37) in eq. (5.36) results in 

 T T
g, g est, g, est, 1 g, g,mΔH h x H x H z   (5.38) 

which leads to the following equation system 
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The system matrix A  again has the dimension 2 2k k . It is still positive definite and 
symmetric. Usually, its rank is only 2 1k , especially if there are no shunt elements in the grid. 
This is mainly due to the fact that power flows are driven by (complex-valued) nodal voltage 
differences rather than their absolute value. To overcome this problem, a reference phase angle 
can be manually defined. This can be done in a similar way to the Newton-Raphson power flow 
calculation.  
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5.4 Construction of the Jacobian 
As described initially, the measurement vector contains power, voltage magnitude and 
potentially even current magnitude information. The system state vector estx  may be based on 
either Cartesian or polar coordinates. In the following, polar coordinates are used as shown in 
eq. (5.1).  

5.4.1 Nodal powers 

Nodal powers can be calculated using the power equation eq. (4.22). The partial derivations 
with respect to voltage angle and magnitude are already known from the Newton-Raphson-
approach based on polar coordinates. Hence the Jacobian J developed in chapter 4.3.2 can also 
be used for state estimation.  
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  (5.40) 

For the purpose of state estimation only the lines of SKJ  are actually needed, that represent a 
node at which active or reactive powers are measured. This selection can be applied using the 
nodal powers measurand incidence matrix SKM .  

 SK SK SKH M J   (5.41) 

5.4.2 Terminal powers 

In its construction the terminal power equation 

 TT T T3s U Y u   (5.42) 

is similar to the nodal power equation. That means their partial derivations can be done the 
exact same way as for the nodal power. Therefore, KKY  simply needs to be replaced by TY  
and instead of Ku  Tu  is used. This results in a Jacobian STJ  with dimension 2 2t t . The 
derivation with respect to terminal values needs to be reassigned to nodal values. Due to 
terminal voltages are a linear function of nodal voltages 

 T
KTT Ku K u   (5.43) 

this can be applied to the system variables as well 
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  (5.44) 

Using the terminal powers measurand incidence matrix STM  this results in 

 
T
KT

ST ST ST T
KT

K 0
H M J

0 K
  (5.45) 



50 5  State Estimation 

 

5.4.3 Nodal voltage magnitudes 

Nodal voltage magnitudes are system variables themselves. Thus, construction of the Jacobian 
UH  is trivial. Due to phase angles and magnitudes are independent values, on the left-hand 

side a k k  empty matrix is used and on the right-hand side the unity matrix. Multiplication 
with UM  removes the nodes without voltage magnitude measurement.  

 U UH M 0 E   (5.46) 

UH  is the only constant submatrix and therefore only needs to be constructed once prior to the 
iteration.  

5.4.4 Nodal current magnitudes 

To calculate the Jacobian, the nodal currents 

 KKK Ki Y u   (5.47) 

are split into real and imaginary part 
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such that the current magnitude results can be calculated 

 2 2
K,r, K,i,I I I   (5.49) 

Using the chain rule the partial derivations are now performed. Derivation with respect to the 
phase angle results in  

 KK, , K,K,
Iδ, , K,r, , K,i, ,2 2K, K,r, K,i,

sin cos
Y UI

J I I
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  (5.50) 

Derivation with respect to the magnitude results in 

 KK, ,K,
IU, , K,r, , K,i, ,2 2K, K,r, K,i,

cos sin
YI
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  (5.51) 

Using the nodal current magnitude measurand incidence matrix IKM  the Jacobian IKH  is 

 IK IK Iδ IUH M J J   (5.52) 
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5.4.5 Terminal current magnitude 

In its construction the terminal current equation 

 TT Ti Y u   (5.53) 

is similar to the nodal power equation. That means their partial derivations can be done the 
exact same way as for the nodal power. Therefore, KKY  simply needs to be replaced by TY  
and instead of Ku  Tu  is used. Similar to the terminal powers, the partial derivations with 
respect to terminal voltages need to be reassigned to nodal voltages using the nodal-terminal 
incidence matrix.  
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5.4.6 Construction of the equation systems 

The submatrices of H are arranged according to the measurement vector in eq. (5.3). 
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Additionally, they are weighted 

 1
gH S H   (5.56) 

This results in the overdetermined equation system  
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To solve it, it is multiplied with T
gH  as described in eq. (5.39). According to eq. (5.39) 
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To manually set a reference phase angle at one node, similar to the power flow approach, in the 
equation system 

 K

K

Δ
Δ

Δ
δ

A y
u

  (5.59) 

the additional constraint 

 K,refΔ 0   (5.60) 

is added. 

5.5 Flow chart of the iteration 
The flow chart of the iteration is given in Fig. 22. It is similar to the flow chart of the power 
flow iteration. Based on the current estimated system state the measured values are reproduced 
with the system model and the difference to the measured information is calculated. 
Subsequently, the Jacobians are constructed and the equation system to calculate the minimum 
squared error is solved after the integration of the voltage reference angle. This results in an 
update of the current estimated grid state. The procedure is repeated until the update is smaller 
than a predefined threshold.  

 

 
Fig. 22: flow chart of the state estimation iteration 
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It is advantageous to use measured voltages for the initial guess. For the remaining voltage the 
nominal value can be assumed. If needed, it is compulsory to set reference angles correctly for 
the initial guess. 
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6 Short-circuit calculation 
Short-circuits are a high electric, thermal and mechanical threat to the electric power supply 
system. The intensity of the short-circuit current and its impact on the assets and the 
surroundings need to be considered not only during system operation but also during the grid 
planning phase. That means, the assets and protection systems need to be dimensioned and 
parameterized under uncertain conditions for highest and lowest possible short-circuits. In 
doing so, it is assumed, that the three-phase fault results in the highest short-circuit currents. In 
this case, only the positive sequence system needs to be modelled, due to the fault is symmetric. 

The time-series of a three-phase fault at zero-crossing of the voltage close to a synchronous 
generator is given in Fig. 23 together with some characteristic parameters. 

 
Fig. 23: exemplary time-series of a short-circuit current 

The objective of short-circuit calculation – during planning as well as the operational phase – 
is the calculation of the initial symmetrical short-circuit current kI . To avoid constructing and 
solving a differential equation system, the standard IEC 60909 defines some factors which 
allows to sufficiently precise infer on other important parameters. These are mainly: 

 the maximum aperiodic short-circuit current pi   
 the breaking current aI   
 the steady-state short-circuit current kI   
 the thermal equivalent current thI   

The approximation of these characteristic parameters using IEC 60909 factors shall only be 
applied to public energy supply grids showing a homogenous R/X-ratio and only a couple of 
rotating machines. In industrial grids and grids for station supply, which are characterized by a 
high amount of drives, the error of estimation increases to such an extent that only solving the 
differential equation will lead to a reliable solution.  
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While the objective of the short-circuit calculation is always the same, the input data is different 
during grid planning and grid operation. Grid operators can rely on actual, online grid 
information, e.g. the estimated grid state, which includes load and generation information as 
well as tap positions and switching states. Thus, it is possible to apply a detailed short-circuit 
calculation that is based on the estimated grid state. Besides the initial symmetrical short-circuit 
current it is also possible to calculate the exact nodal voltages during the fault or the time-series 
of currents and voltages by solving the differential equation.  

Short-circuit calculation during the grid planning phase is characterized by a high amount of 
uncertainty. Neither switching states nor the exact load and generation situation are known. 
Nevertheless, based on only little information, it is important to still get a good estimation of 
biggest and smallest possible short-circuit currents. Due to the computational intensity, it is not 
productive to obtain this estimation by simulating different scenarios. Instead, the extrema are 
estimated by applying simplifications and assumptions that are considered to safely model the 
worst-case and best-case scenarios. So, all possible short-circuits that may later occur during 
grid operation are definitely inside this interval.  

6.1 Single line diagram of dipoles for short-circuit calculation 
Short-circuits are fed by all rotating machines – generators and drives – as well as equivalent 
networks. As seen in Fig. 23 the initial symmetrical short-circuit current is a fictitious RMS 
value, that would envelope the short-circuit current in the initial moment. To calculate the share 
of the generators their subtransient model is needed. As usual, the admittance form given in 
Fig. 24 is most advantageous.  

 
Fig. 24: subtransient single line diagram of synchronous generators 

with the subtransient direct axis admittance 
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It is used, due to I  solely depends on rotor fluxes, which stay constant in the moment of 
transition from the non-faulty to the faulty state. Induction machines do not have a subtransient 
state. They are described using the transient model 

 
Fig. 25: transient single line diagram of induction machines 
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with the transient admittance 
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 (6.2) 

Equivalent networks are modeled analogously to synchronous machines as shown in Fig. 26  

 
Fig. 26: single line diagram of an equivalent network 

with the short-circuit admittance 
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 (6.3) 

It is obtained from the R/X-ratio of the grid and its short-circuit power kS  

 2
k N nN1,1S Y U   (6.4) 

Loads without spinning reserve do not contribute to the short-circuit current. It is sufficient to 
model them as passive dipoles, as nodal currents or as equivalent admittances which are 
included in KKY . 

 
Fig. 27: single line diagram of a load without spinning reserve 

6.2 Exact calculation 
The exact calculation of the initial symmetrical short-circuit current is only possible during 
system operation, due to switching states have a high impact on the occurring currents and the 
grid state prior to the fault needs to be known e.g. in form of estimated nodal voltages. In the 
nodal current equation 

 KK K KY u i   (6.5) 

the nodal currents are the sum of currents of dipoles which are connected to the respective 
nodes. They are now replaced by the single line diagrams given in chapter 6.1. Shunt 
admittances are added to the bus admittance matrix while source currents remain on the right-
hand side. So, eq. (6.5) results in 
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Y  is a diagonal matrix with the shunt admittances of the dipoles on the main diagonal and q
"i  

is the vector of source currents. Loads without spinning reserves are entirely modelled as 
admittance, thus q

"i  is zero at nodes without machines. KKY  is invertible due to the additional 
elements on the main diagonal.  

If a three-phase fault occurs at node i the voltage at this node is set to zero and a potential source 
current at this node is superposed to all of the short-circuit contributions of the other dipoles. 
This results in the initial symmetrical short-circuit current kI  at node i.  
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Eq. (6.7) can be solved, by removing the i-th column and row. The reduced equation system is 
solved for the faulted nodal voltage vector K,ku . It is afterwards used to solve the previously 
removed i-th row for kI . 

System operators need to know the impact of a potential short-circuit at each node. Therefore, 
eq. (6.7) would need to be constructed and solved for each node separately. Using today’s 
computational power and the possibility to parallelize the process, computational time is 
tolerable even in bigger grids with lots of nodes. Nevertheless, it can be minimized, if the 
(reduced) system matrix of the equation system would not depend on the fault location and 
therefore becomes constant. In this case, the equation system would only have to be constructed 
and inverted once. This can be achieved by using a superposition approach which allows to still 
calculate short-circuit voltages and currents correctly. 

6.3 Superposition approach by Helmholtz and Thévenin 
The superposition approach aims at calculating the faulted system state as a superposition of 
the non-faulty state and a differential state. Eq. (6.6) is therefore expressed as follows 
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Eq. (6.8) consists of the initial state prior to the fault 

 KK K qY u i  (6.9) 

and the differential state 

KK K,k K,kΔ ΔY u i (6.10)
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As described above, the system matrix is constant and does not depend on the fault location. 
Furthermore, due to it contains additional elements on the main diagonal, KKY  is invertible. 
Therefore, eq. (6.10) can be directly expressed in its impedance form 

 KK K,k K,kΔ ΔZ i u   (6.11) 

To model the short-circuit constraints at node i in accordance to eq. (6.7), at the fault location, 
the differential state corresponds to the negative voltage prior to the fault 

 K,k, K,Δ i iU U   (6.12) 

The short-circuit current only occurs at the fault location i. Furthermore, source currents of 
generators and drives are constant. Therefore, K,kΔi  is zero, except at position i. Thus, 
eq. (6.11) can be written in more detail 
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In the i-th row of eq. (6.13), ,kΔ iI  can be directly calculated 

 ,k
,

1Δ i i
i i

I U
Z

  (6.14) 

After that, the differential voltages at all the other nodes can be obtained by multiplying ,kΔ iI
with the i-th column of the impedance matrix. This differential state is finally superposed with 
the initial state according to eq. (6.8). The differential state is also called Thévenin equivalent. 

A graphical representation of the superposition approach is given in Fig. 28. The grid and all of 
its non-spinning loads, shunt elements, drives and generators are summarized as a black box 
and only the short-circuit position at note i is drawn separately. The faulty state (left hand side) 
consists of the initial state (middle) and the differential state (right hand side), which contains 
the voltage constraints at the fault location. 

 
Fig. 28: principle of superposition 

Using the superposition principle, a change in the fault location can be implemented by simply 
changing the right hand side of the equation system given in eq. (6.13). The system matrix does 
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not need to be reconstructed or reinverted. If D  is the diagonal matrix of KKZ , then the 
differential states of all short-circuits at every node can be calculated in one single step. 

 
1

K,k K

1
KKK,k K

Δ

Δ

i D u

U Z D U
 (6.15) 

6.4 Short-circuit calculation according to IEC 60909 
To exactly calculate the short-circuit currents, a dedicated system state described by a consistent 
nodal voltage vector needs to be available. This is not the case during grid planning, due to 
information on load and generation can only be approximated and switching states as well as 
tapping positions need to be assumed. The method of placing an equivalent voltage source at 
the fault location according to the standard IEC 60909 is a suitable approach, which minimizes 
the need for exact input information but is still able to estimate biggest and smallest possible 
short-circuit currents at a fault location.  

The method is loosely based on the superposition approach. Nevertheless, information on the 
initial state is not available due to the lack of operational information. Thus, only the differential 
state is considered. Additionally, some simplifications are used: 

 Loads without spinning reserve used to be modeled entirely as admittance in the 
equation system. During the fault, voltages over the loads are very low. Thus, they are 
neglected. By doing so, load uncertainty has been bypassed. 

 For the same reason of low voltages during the fault, shunt elements of the equipment 
(mainly capacitive shunts of lines) are neglected.  

 To overcome the uncertainty of generation, all sources in the grid are passivated, which 
means, current sources are opened and voltage sources are short-circuited.  

 Shunt elements of drives, generators and equivalent networks are kept in the grid. 

By doing so a source-free, unloaded grid is constructed, which only contains the shunt elements 
of drives, generators and equivalent networks but besides this has no connection to ground.  

Now, at the fault location an auxiliary voltage source auxU  is connected, which drives the short-
circuit current. Due to the exact voltage magnitude is unknown, the nominal voltage and a 
correction factor c is used. 

 nN
aux 3

UU c   (6.16) 

The described grid is shown in Fig. 29 as a black box again. 

 
Fig. 29: short-circuit calculation according to IEC 60909 

LY CY dYqI

auxU
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It is obvious, that using this approach the short-circuit contributions of machines and equivalent 
networks are almost proportional to their internal admittance. The method of the auxiliary 
voltage source at the fault location aims at approximating the short-circuit currents close to the 
fault location. With increasing distance to the fault, the error of estimation increases as well. 
The same is valid for the voltages. 

By trend, neglecting shunt elements and load admittances leads to short-circuit currents that are 
estimated lower than the actual ones. This can be compensated by the correction factor c. 
IEC 60909 suggests the following factors for transmission systems 

 
1,1 to calculate maximum short-circuit currents
1,0 to calculate minimum short-circuit currents

c   (6.17) 

In distribution systems, even 1c  is possible. 

Estimation of biggest short-circuit currents is used to dimension and parameterize assets, 
insulation and bearings in such a way, that they can bear the maximum thermal, mechanic and 
electric stress. On the other hand, estimation of smallest short-circuit currents is used, to 
correctly parameterize the protection system to make sure that all faults – even those with low 
impact on currents and voltages – are securely detected and switched off. 

The calculation of the short-circuit currents is done analogously to the calculation of the 
differential state of the superposition approach. The system matrix is constant and invertible. 
To calculate the short-circuit current at the i-th node, first, the initial symmetrical short-circuit 
current is obtained from the i-th row. Usually, this information is sufficient during grid 
planning, so the process can be stopped at this point. To additionally calculate the currents on 
the lines and the contribution of each generator, the voltage differences can be obtained by 
multiplication of the i-th column of the equation system with the initial symmetrical short-
circuit current. 

The equation system is similar to the equation system of the superposition approach. 
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6.5 Impedance correction 
As described above, using an auxiliary voltage source at the fault location leads to short-circuit 
currents that are not very precise. According to experience, contributions on power plants 
(synchronous machines) are estimated up to 40 % too low and contributions of drives (induction 
machines) too high. Due to the inner sources of the machines are passivized, the only possibility 
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to correct the respective short-circuit contribution is to modify the impedance of the machines 
to artificially increase or decrease their short-circuit current.  

The process is explained using a generator which runs at the rated operation point prior to the 
faults. This means, 
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If there is a three-phase fault at the terminal of the generator and the armature resistance aR  is 
neglected, this leads to the following short-circuit contribution 

 GrG d
k,G

d

j 3
3 j

U X II
X
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If the same case is modeled using the auxiliary voltage source at the generator terminal, this 
will result in 

 aux nN
k,F

d dj j 3
U c UI
X X

  (6.21) 

To match k,GI  and k,FI , in eq. (6.21) a correction factor Gk  is introduced to modify the 
subtransient direct axis impedance. 
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  (6.22) 

Eq. (6.22) is solved for Gk  
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Using the rated generator current in eq. (6.19) and the definition of the subtransient direct axis 
impedance 
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eq. (6.23) can also be expressed 
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The imaginary part of Gk  is small compared to the real part. So, it is suitable to neglect it, 
which also leads to a real-valued correction factor.  
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Usually, Gk  is smaller than one. So, the correction factor will decrease the impedance of the 
generator and thus increase its contribution to the short-circuit current. 

The development of the correction factor for drives is done analogously. Usually, the rated 
voltage of the drive is equal to the nominal grid voltage. This results in 

 M
S rM1 sin

ck
x

  (6.27) 

Mk  is usually greater than one. So, the correction factor will increase the impedance of the drive 
and thus decrease its contribution to the short-circuit current. 
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7 Stability 
Stability of the electric power supply system describes the capability of generators to stay 
synchronized even in dynamic situations like load changes, faults and fault clearance. The 
system is fed by a large number of differently sized generators, mostly synchronous machines. 
Their big gyrating mass mainly contributes to the inertia of the entire system and leads to the 
comfortable fact, that electro-mechanical transients proceed rather slowly which simplifies 
control of the grid. Thus, generators define the stability of the system. 

Usually, stability is understood as rotor angle stability of the generators (in contrast to voltage 
stability and frequency stability). Rotor angle stability can be further divided into 

 Steady-state stability (small-signal stability), to prove the existence of stable operation 
points, that means analysis of the capability of the generators to stay synchronized at a 
given operation point 

 transient stability, which analyzes the capability of generators to find a new stable and 
synchronized operation point after a bigger disturbance. 

Besides rotor angle stability, also frequency stability (long term stability) and voltage stability 
are of interest. They are not dealt with in this chapter. 

7.1 Generator models 
To analyze small-signal and transient stability, different generator models need to be applied. 
They can either be implemented as voltage or current source. Both ways are comparable. While 
the current source is advantageous for grid calculations based on admittance matrices 
implementation of voltage sources is more descriptive and allows the transfiguration of the grid.  

Small-signal stability is a steady-state problem. That is why the steady-state generator model is 
used. The synchronous generated voltage drives the generator current and is connected to the 
grid via the synchronous impedance which consists of the armature resistance and the 
synchronous direct axis reactance.  

 G a d
G

1 jZ R X
Y

  (7.1) 

 
Fig. 30: steady-state generator model 

The synchronous generated voltage linearly depends on the rotor speed ω and the excitation 
current fI . If there is a sudden disturbance in the grid, this will lead to an abrupt reaction of the 
rotor currents, to keep the flux linkage constant. This reaction has such a strong influence on 
the synchronous generated voltage, so that it cannot be used for transient analysis.  

Other than the synchronous generated voltage, the transient generated voltage does not depend 
on the excitation current but only on the rotor flux linkage. If the effects of the damper winding 
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are neglected, there will be an abrupt reaction as well. Nevertheless, it is sufficiently small. 
Additionally, the transient generated voltage fades only little after the fault. So, in a good 
approximation it can be seen almost constant during the entire time. It is therefore the best 
choice to model phenomena that occur in the transient domain. 

The single line diagram of the transient state is similar to the steady-state model. Besides the 
transient generated voltage or current, the transient direct axis impedance is used, which is about 
one fifth of the synchronous direct axis impedance. 

 G a d
G

1 jZ R X
Y

 (7.2) 

 
Fig. 31: transient generator model 

The phasor diagram summarizes steady-state and transient operation points of the synchronous 
generator. 

 
Fig. 32: phasor diagram of a synchronous generator 

The synchronous generated voltage rotates synchronously with the rotor and lies in the 
quadrature axis q of the generator. Its phase angle in relation to the phase angle of the reference 
voltage NU  describes the rotor position.  
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7.2 Description of rotor motion 
The equation of motion of the rotor of a synchronous machine is described by the principle of 
conservation of angular momentum 

 J MM   (7.3) 

Ω is the mechanical rotor speed. It can be converted to the electric rotor speed by multiplication 
with the number of pole pairs of the generator. 

 L Lp   (7.4) 

The generator is accelerated by the mechanical torque mM  provided by the turbine and slowed 
down by the electrical torque eM  which results from the infeed of active power into the grid. 
If rotor speed and grid frequency differ, this results in a change of the rotor angle. 

 L 0LLLL   (7.5) 

Eq. (7.3) and eq. (7.5) form a first order differential equation system. 
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To analyze stability issues, it is more productive to only look at deviations from synchronous 
operation. Thus, only changes of the rotor position in relation to the reference phase angle are 
calculated. Eq. (7.6) is therefore rewritten 
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In explicit form 
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The operation points of the turbine and the generator are usually expressed using powers instead 
of torques. Via the relationship 
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torques can be replaced in eq. (7.8). 
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The question of rotor angle stability is answered within a couple of seconds after the disturbance 
and potentially its clearance. During this time, due to the big gyrating mass, rotor speed does 
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not change very much. Thus, it can be assumed, that the rotor speed is still almost equal to the 
grid frequency. 

 L 0   (7.11) 

Using the mechanical time constant of the generator 
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and the assumption of eq. (7.11), a machine factor mk  can be introduced 
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which further simplifies eq. (7.10) 
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7.3 Equivalent network model 
Similar to generators, equivalent networks are modeled as dipoles. Nevertheless, the phase 
angle of the inner source is always synchronous to the grid frequency. The initial value can be 
obtained from a power flow calculation of the steady-state operation point prior to the 
disturbance. It stays constant the entire time. 

 
Fig. 33: voltage and current source single line diagrams of equivalent network models 

7.4 Grid transfiguration to the generator nodes 
For the purpose of stability analysis, usually generators and equivalent networks are modeled 
as voltage sources. The main disadvantage of this approach is, that the k actual grid nodes are 
supplemented by g fictitious, inner generator nodes. Nevertheless, for this analysis only 
generator voltages and currents are needed, thus the grid can be reduced to the inner generator 
nodes. This procedure is called transfiguration. All loads without inner sources are expressed 
again as equivalent admittances LY  and included on the main diagonal of the bus admittance 
matrix. So, all currents at nodes without drives or generators are zero. The equation system 
consists of k grid nodes and g inner generator nodes which are connected to the rest of the grid 
via GY . 
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The generator incidence matrix KGK  describes the connection of a generator to a grid node. It 
is built analogously to KTK . This results in the following equation system 
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Using the abbreviation 

 T
KK,G,L KK L GKG KGY Y Y K Y K   (7.17) 

The upper half of the equation system can be solved fur Ku . The result is inserted into the lower 
equation system 

 1T
G KK,G,L G G GGKG KG G G GY K Y K Y Y u Y u i   (7.18) 

Eq. (7.18) now has the dimension g g . The resulting system matrix is dense. If KKY  is 
symmetric it will be symmetric, too. Their diagonal elements are called feeder admittance and 
the other elements transmission admittance. 

7.5 Small-signal stability 
Small-signal stability describes the capability of generators to stay in a synchronous operation 
point under steady-state conditions. Calculation of small-signal stability is therefore the search 
for the existence of stable, steady-state operation points. Besides the active power infeed of the 
generator, additional parameters e.g. voltage control may be included.  

7.5.1 Demonstration of small-signal stability using the single-machine-problem 

To visualize the process of small-signal stability analysis, the single-machine problem is used. 
The generator is connected to a grid given in Fig. 34. All assets are considered entirely inductive 
so losses are neglected. The generator feeds into the grid via a two-winding transformer and a 
system of two parallel lines.  

 
Fig. 34: single-machine problem 

This results in the following single line diagram. 

 
Fig. 35: single line diagram of the grid 
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The power exchange of the grid and the generator is defined by the inner voltages and the 
impedances between them. 

 p N
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  (7.19) 

The inner voltage of the grid is usually defined as reference voltage and the reference phase 
angle is set to zero. Thus, it is real-valued. If the synchronous generated voltage is expressed 
by magnitude and phase, the active power output of the generator in eq. (7.19) can be expressed 
as follows 
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  (7.20) 

Due to the grid is considered entirely inductive without ohmic losses, the active power infeed 
of the generator corresponds with the active power consumption of the grid.  

 N GP P   (7.21) 

The power curve of the system is given in Fig. 36. 

 
Fig. 36: operation points of the generator 

The intersections of the power curve with the active power output of the turbine are possible, 
steady-state operation points of the generator, due to the sum of power is balanced. Proof of 
small-signal stability of the two operation points shall be done with a thought experiment.  

First, the left operation point is reviewed: 

 If the generator accelerates, the rotor angle increases a little bit. At that moment, it feeds 
more power into the grid as actually provided by the turbine. This difference has to be 
taken from the kinetic energy, which means the generator slows down until the power 
balance is reached again. Thus, the generator returns to its original operation point.

 If the generator is slowed down, the rotor angle decreases a little bit. At that moment, it 
feeds less power into the grid as actually provided by the turbine. This difference is used 
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to reaccelerate the generator until the power balance is reached again. Thus, the 
generator returns to its original operation point. 

Consequently, the left operation point is stable. The experiment is repeated for the right 
operation point: 

 If the generator accelerates, the rotor angle increases a little bit. At that moment, it feeds 
less power into the grid as actually provided by the turbine. The difference is used to 
accelerate the rotor even more, which means, the rotor angle is further increasing. Thus, 
the generator is drifting apart from the operation point and will not return to it. 

 If the generator is slowed down, the rotor angle decreases a little bit. At that moment, it 
feeds more power into the grid as actually provided by the turbine. This difference has 
to be taken from the kinetic energy, which means, the rotor is further slowed down and 
the rotor angle is further decreasing. Thus, the generator is drifting apart from the 
operation point and will not return to it. 

Consequently, the right operation point is instable. Having a look at Fig. 36 a stability limit can 
be found at π/2. Furthermore, it is obvious, that a smaller rotor angle means a more stable 
system.  

7.5.2 General calculation of small-signal stability 

Small-signal stability can be described using eigenvalue analysis. Due to the displacement in 
the thought experiment is a small signal, a linearization of the motion equation system of the 
generators around the operation point is valid. For g generators eq. (7.14) is converted to matrix 
form 
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Due to the active power output ep  of the generators is a trigonometric function of the rotor 
angle, the system is non-linear. Linearization is achieved by the application of a Taylor-series 
expansion. 
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The linearized part of the active power output is included into the system matrix. Due to the 
system has been linearized around an existing operation point, Tp  and e,0p  sum up to zero. 
This results in the remaining equation system. 
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The eigenvalues of the system matrix of eq. (7.24) are a description of the self-oscillation of 
the uncontrolled generator. As long as no eigenvalue has a positive real part, the system is 
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stable. Differentiation of the active power output with respect to the rotor angle is done 
analogously to the construction of the respective submatrix of the Jacobian of the power flow 
equations in polar coordinates. 

Exemplarily, in case of the single machine problem, the result is 
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This results in the characteristic polygon 
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with the eigenvalues 
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As long as p,0cos 0 , which means p,0
π

2  eq. (7.27) results in a complex-valued pair 
of eigenvalues without real part. Thus, the generator is stable. If p,0

π
2 , which means 

p,0cos 0 , a real-valued pair of eigenvalues is obtained, whereof one eigenvalue is positive. 
In this case, the generator is instable. 

7.5.3 Measures to increase small-signal stability 

To increase small-signal stability, it is necessary to find an operation point far away from the 
stability limit. Furthermore, to increase the capability of the generators to keep synchronism, it 
is aspired to get a high gradient of the generator’s active power output. According to eq. (7.20) 
several possible solutions are thinkable. To decrease psin  but keep GP  constant, the 
numerator needs to get as big as possible and the denominator as small as possible. 

Decreasing the denominator means, to reduce the impedance between the generator and the 
grid. This can be achieved by increasing the number of meshes in the grid, parallel lines or by 
series compensation to reduce the dominating inductive part of the impedance.  

The grid voltage can only be changed within a small band around the nominal value. Thus, the 
only way to increase the numerator is to control the synchronous generated voltage. This is 
done by excitation of the synchronous machine. The synchronous generated voltage is a linear 
function of the excitation current. For the purpose of simplification, the degree of excitation ε 
is introduced. 
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With ε eq. (7.20) can be rewritten 

 
2
N

G p3 sinUP
X

  (7.29) 
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A higher excitation increases the breakdown torque of the generator and the stable operation 
point moves towards smaller rotor angles. The power output diagram of the single-machine 
problem is given in Fig. 37 for several degrees of excitation. 

 
Fig. 37: impact of excitation on the position of the operation point 

It is obvious, that small-signal stability decreases with decreasing excitation. These operation 
points are necessary, if capacitive shunts e.g. of lines in the grid provide a sufficient amount of 
reactive power. In this case the generator is only little excited or even under-excited to push the 
voltage down again. So, in contrast to all other contingencies in the grid, the biggest threat to 
rotor angle stability is not the highly loaded grid but the unloaded grid due to the lines provide 
enough reactive power themselves. This can only be reduced by switching off lines to higher 
burden the remaining grid. But this is limited by additional constraints mainly due to the n-1-
criterion. 

7.6 Transient stability 
Transient stability is the capability of generators to return into a new stable operation point after 
a disturbance in the electric energy supply system. Usually, the three-phase short-circuit is 
considered the biggest possible disturbance. It leads on the one hand to the biggest imbalance 
of power but on the other hand, it is symmetric and can be modelled using only the positive 
sequence system. 

In contrast to the small-signal stability, the disturbance is so big, a linearization at the operation 
point prior to the fault cannot be applied. Instead, the motion equation system of the generators 
needs to be solved by numerical integration. The resulting time-series of the oscillations of the 
rotor angle show the transient behavior of the generator and are needed to obtain the time-series 
of all other electric and mechanical information. In contrast to the mechanical osciallations of 
the rotor, the electric transients in the grid are damped rapidly, such that the grid can be 
considered steady-state again. The necessity of steady-state grid analysis and dynamic rotor 
motion calculation results in an algebro-differential equation system which is typical for quasi 
steady-state analysis. The question of transient stability is answered within the first couple of 
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seconds after a disturbance. This fact can be used to simplify the analysis by making the 
following assumptions: 

 The transient generated voltage is constant, due to the voltage controllers have not 
reacted in such a short period of time.  

 The torque of the turbine is constant, due to the governor is slow. 
 Loads are constant and can still be modeled as equivalent admittances. 
 Frequency control has not reacted due to the rotor frequency is still within the tolerable 

bounds. 

In combination with the three-phase short-circuit but with exception of the first assumption, 
this represents the worst-case. In a real system, the generator would be more stable than 
predicted by these assumptions.  

7.6.1 Demonstration of transient stability using the single-machine problem 

The principles of transient stability are visualized using again the single-machine problem given 
in Fig. 34. Therefore, a three-phase fault on one of the lines close to the bus bar is assumed. 
The fault is later on cleared by switching off the faulty line. This results in three different single 
line diagrams: prior to the fault, during the fault and after clearance of the fault.  

 
Fig. 38: single line diagram prior to the fault 

 

 
Fig. 39: single line diagram during the fault 

 

 
Fig. 40: single line diagram after the fault 

First, the initial values of  and U  or qI , respectively, are based on a load flow calculation 
of the system prior to the fault. The generator is operated at a stable operation point. Using the 
generator terminal voltage GU  the transient generated voltage is obtained 

U NU
djX TjX

L0,5 jX NjX

U NU
djX TjX

L0,5 jX NjX

U NU
djX TjX LjX NjX
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 j
GdGe jU U U X I   (7.30) 

with 

 N   (7.31) 

Usually, the reference phase angle of the grid voltage is set to zero such that . Similar to 
the synchronous generated voltage, the transient generated voltage is fixed to the rotor, too. 
This means that  can also be used to model the motion of the rotor. The system was in steady-
state before the fault, so the initial values of the variables of the motion equation are all zero, if 
the motion equation is related to the synchronous speed. 

Due to the three-phase fault, the generator cannot provide any power to the grid anymore. The 
generator current abruptly shifts to the transient short-circuit current 

 k
d Tj
UI

X X
  (7.32) 

This is a pure reactive current. The power provided by the turbine is fully used to accelerate the 
generator, resulting in a change of the rotor speed.  

 m Tk Pm Tk Pm T   (7.33) 

So, the rotor angle increases quadratically over time for the duration of the fault.  

 2
m T 0

1d d d
2

t t t t k P t
2

d dtd d 11t 1d dtd dtd d   (7.34) 

At the moment of clearance of the fault, the transient generated voltage phase angle is FC . 
From that moment on, the generator is able again to feed power to the grid according to its 
power curve. Clearance of the fault resulted in a topological change of the system, due to one 
of the lines has been switched off. That is why the power curve now is below the original one. 
According to the curve, the generator provides more power to the grid than it receives from the 
turbine. As already known from small-signal stability analysis, the generator starts to slow 
down. Due to the rotor is considerably faster than the grid, it takes some time to slow it down, 
until it is synchronous again. Up to then, the transient rotor angle is still increasing. Such a point 
of synchronism can only be found left from the instable, second operation point. Otherwise, the 
generator would already be accelerated again and starts to overrun. In this case the generator is 
transiently instable and needs to be switched off.  

If there is a first point of synchronism, the provided electric power there is superior to the power 
of the turbine, which means the rotor starts to slow down and the rotor angle decreases. The 
rotor speed is now slower than the grid frequency, so the rotor overshoots the stable operation 
point and needs to be accelerated again. It becomes apparent, that the generator reaches its new 
stable operation point by a damped oscillation. The process is shown in Fig. 41. 
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Fig. 41: acceleration and breaking areas of the single machine problem 

The question of transient stability is therefore a question of the existence of the first point of 
synchronism. It can also be answered by having a look at the change of the kinetic energy of 
the generator. During the fault, the kinetic energy of the rotor increases.  

 2 2
kin L L T FC 0 acc2

0 0

1 1 1 1Δ Δ Δ
2 2

JE J P A
p

  (7.35) 

This increase is proportional the product of the turbine power and the rotor angle difference 
prior to and after the fault. This product corresponds to an area accA  in Fig. 41, which is 
therefore called acceleration area.  

The same considerations can be made for the time after the fault clearance and the first point of 
synchronism. During this time, the rotor is slowed down which is why the resulting area decA  
is called breaking area. The area is 

 
max

FC

dec T G dA P P   (7.36) 

If there is a solution for eq. (7.36), which means there is a max , with 

 dec max accA A   (7.37) 

in this case, the generator is transiently stable. 
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Fig. 42: time-series and roto speed for a transiently stable generator 

 

 
Fig. 43: critically stable time-series of roto angle and rotor speed 

 

 
Fig. 44: instable stable time-series of roto angle and rotor speed 

It is obvious, that transient stability does not only depend on the operation point of the generator 
but also on secondary factors like the fault location and the duration of the fault.  
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7.6.2 General determination of transient stability in grids with several generators 

In real grids which are fed by a variety of different generators it is usually impossible to rely on 
a synchronous equivalent network. In fact, the oscillations of the generators among themselves 
are analyzed. A grid containing g generators results in a differential equation system with 2 g 
variables according to eq. (7.22). The generator currents and transient generated voltages can 
be used to calculate the electric active powers ep  which are needed to numerically solve the 
differential equation system. This results in a time-series of the rotor angle motions. Their 
behavior is used to decide, whether the system is transiently stable or not. If the rotor angles 
settle at a new steady-state value and stay close to each other, the system is transiently stable. 
If one of the angles diverges from the others, this generator is instable.  

Instead of the reference angle of an equivalent network, the center of inertia of the generators 
can be used as reference value. It is obtained by the weighted average of the rotor angles. 

 
rG, m,

1
Z

rG, m,
1

g

i i i
i

g

i i
i

S T

S T
  (7.38) 

The generators oscillate around their common center of inertia. Topological properties of the 
grid may lead to distinct groups of generators that will form their respective centers of inertia. 
These groups can be used to aggregate generators and save computational time by simply 
analyzing the mutual motion of the aggregated groups.  

 
Fig. 45: multi-machine problem 

 

 
Fig. 46: stable time-series of rotor angle and speed (fault duration: 150 ms) 

 

~ ~



7.6  Transient stability 79 

 

 
Fig. 47: critically stable time-series of rotor angle and speed (fault duration: 425 ms) 

 

 
Fig. 48: instable time-series of rotor angle and speed (fault duration: 426 ms) 

 

7.6.3 Measures to increase transient stability 

To improve transient stability, it is necessary to provide sufficient reserves for slowing down 
or accelerating the rotor again after clearance of the fault. This can be achieved by maximizing 
the quotient of breakdown power and turbine power. Several options are available: 

 High magnitude of U , that means high excitation, resulting in small transient rotor 
angles   

 Small grid impedance, which can be achieved with meshing or series compensation, 
similar to small-signal stability 

 Selective and fast fault clearance 
 Fast turbine governors 
 Damping of rotor oscillations using additional controllers, so called Power System 

Stabilizers (PSS) 
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8 Modelling of shunt and series faults 
In the electric power system, the occurrence of faults is inevitable. All possible sorts of faults 
must therefore be considered during grid planning and grid operation to not endanger assets, 
people and system security, if a fault occurs. In general, faults are divided into series and shunt 
faults: 

 Shunt faults are faults that occur orthogonal to the power flow direction. They establish 
a conducting connection between phase and ground or between other phases (and 
potentially with ground). The perturbation and the intensity of the fault current depends 
on the constellation of the fault. If the fault current is high, it is called short-circuit 
current. 

 Series faults are faults that occur in the direction of the power flow. They may be an 
increase of impedance up to a total interruption of the line. On the other hand, short-
circuiting of an aspired interruption, e.g. a breaker that has not opened correctly, is seen 
as a series fault as well.  

Shunt and series faults can occur balanced or unbalanced, as single or multiple parallel faults 
in any arbitrary constellation and combination and at different positions in the grid. This is 
typical for some sorts of faults. E.g. a single-line-to-ground fault causes the voltage to increase 
by the factor of 3  in the healthy lines of ungrounded grids which may lead to secondary short-
circuits if the insulation cannot bear the voltage rise. 

To calculate unbalanced faults, usually, the fault constellation, which is known in natural 
coordinates, needs to be transformed into symmetrical components. Therefore, the network 
descriptions of the positive, negative and zero sequence system need to be interconnected at the 
fault location depending on the fault. This gets very complicated in case of several parallel 
faults. Using the fault matrix method described here, the interconnection of these systems can 
be done in an easy and systematic way by integrating the fault conditions into the current 
equation of the grid. Thereby, the fault matrix method is independent from the actually used 
coordination systems and works with natural coordinates as well as every modal transformation. 
Besides, it offers some additional advantages: 

 All matrices that need to be inverted are not singular. 

 The number of nodes and terminals stays constant and is does not depend on the faults 
or the switching state. 

 Shunt faults without an impedance (Y ) and series faults without an admittance  
( Z ) can be expressed and integrated without any numerical assumptions. 

 

8.1 Fault conditions 
The relations between voltages and currents at the fault location are called fault conditions. 
Independent from the used coordinate system, in a three-phase grid, there are always three dual 
voltage and current constraints which combine to the fault conditions. They can therefore be 
expressed using a characteristic 3 3  fault matrix F.  
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8.1.1 Fault conditions in natural coordinates 

To model shunt faults, at the respective location fault impedances FZ  are included into the line 
diagram. They carry the fault current FI   

 
Fig. 49: modelling of shunt faults 

In the healthy phases, the fault current is zero. In the faulty phases, the impedance creates a new 
mesh. The sum of voltages in this mesh must be zero. These two conditions can be expressed 
using the above-mentioned fault matrix. 

 
F,a

F,b

F,c

I
I
I

F 0   (8.1) 

and 

 
F,a F,aa

T
F,b F,bb

F,c F,cc

U Z I
U Z I
U Z I

E F 0   (8.2) 

Series faults are modelled by including fault admittances FY  into the line diagram at the 
respective location bearing a series fault voltage FU . 

 
Fig. 50: modelling of series faults 

In the healthy phases, the fault voltage is zero. On the other hand, in faulty lines, the fault 
admittance forms an additional fork, at which the sums of currents must be zero, according to 
Kirchhoff’s first law. Both constraints can again be combined using the fault matrix. 
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F,a

F,b

F,c

U
U
U

F 0   (8.3) 

and 

 
a F,a F,a

T
b F,b F,b

c F,c F,c

I Y U
I Y U
I Y U

E F 0   (8.4) 

 
Table 5: overview of fault matrices 

shunt faults  series faults  fault matrix 

no shunt fault 
F,a

F,b

F,c

0
0
0

I
I
I

  no series fault 
F,a

F,b

F,c

0
0
0

U
U
U

 
1 0 0
0 1 0
0 0 1

 

single phase 
to ground 

F,a F,aa

F,b

F,c

0
0
0

U Z I
I
I

 single phase 
open 

a F,a F,a

F,b

F,c

0
0
0

I Y U
U
U

 
0 0 0
0 1 0
0 0 1

 

two phases to 
ground 

F,a

F,b F,bb

F,c F,cc

0
0
0

I
U Z I
U Z I

 two phases 
open 

F,a

b F,b F,b

c F,c F,c

0
0
0

U
I Y U
I Y U

 
1 0 0
0 0 0
0 0 0

 

three phases 
to ground 

F,a F,aa

F,b F,bb

F,c F,cc

0
0
0

U Z I
U Z I
U Z I

 three phases 
open 

a F,a F,a

b F,b F,b

c F,c F,c

0
0
0

I Y U
I Y U
I Y U

 
0 0 0
0 0 0
0 0 0

 

two phase 
short-circuit 
without 
ground 

F,a

F,b F,c

F,c F,cc

F,b F,bb

0
0

0

I
I I

U Z I

U Z I

    

1 0 0
0 1 1
0 0 0

 

three phase 
short-circuit 
without 
ground 

F,a F,b F,c

F,b F,bb

F,a F,aa

F,c F,cc

F,a F,aa

0

0

0

I I I

U Z I

U Z I

U Z I

U Z I

   

1 1 1
0 0 0
0 0 0
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The fault matrices for the so-called main-faults are given in Table 5. Main fault means, that the 
fault is symmetric to the reference phase a. All other faults, e.g. a single line to ground fault in 
phase b, is modelled in the exact same way by setting the ones and zeros accordingly in the 
fault matrix.  

Shunt and series faults are modelled using the same fault matrices. This fact is called duality. 
Only for the two-phase and three-phase short-circuit without ground contact there is no 
corresponding series fault. 

If there is no fault, the fault matrix is the unity matrix. In this case in eq. (8.1) the fault currents 
are directly set to zero. In. eq. (8.2) the first term is zero. So, no artificial, numerically high 
impedances need to be assumed to approximate at faultless condition. The same is true for series 
faults. There is no need to include artificial admittances to approximate a connection with no 
impedance or an interruption with no admittance.  

8.1.2 Fault conditions in symmetrical components 

The description of faults in symmetrical components is done analogously to the natural 
coordinates. The system matrix Z , the fault matrix F and the fault impedances and admittances 
are transformed into the modal reference frame using the transformation matrix SKT . This 
results in the fault matrix 

 1
SK SK SKF T F T   (8.5) 

The fault matrix is now complex-valued. With 

 1
F,SK SK F SKZ T Z T   (8.6) 

and 

 1
F,SK SK F SKY T Y T   (8.7) 

the shunt and series faults are calculated in the exact same way as in natural coordinates. Shunt 
faults are calculated according to 

 

F,1

SK F,2

F,0

F,1 F,11
T
SK F,1 F,22

F,0 F,00

I
I
I

U Z I
U Z I
U Z I

F 0

E F 0

  (8.8) 

and series faults respectively 
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F,1

SK F,2

F,0

1 F,1 F,1
T
SK 2 F,2 F,2

0 F,0 F,0

U
U
U

I Y U
I Y U
I Y U

F 0

E F 0

  (8.9) 

where 

 
T TT 1 T 1 1T T

SK SK SK SK SK SK SKF T F T T F T T F T   (8.10) 

Obviously, it is advantageous to model the fault in natural coordinates first and then transform 
it into symmetrical components for calculation. The resulting phase voltages and currents are 
obtained by retransformation afterwards. 

The shown procedure can be used in the same way with any modal component system. 

8.2 General description of shunt faults 
All sequence systems need to be considered to calculate unbalanced faults. Therefore, the 
current equation system is extended to calculate the negative and zero sequence system as well 
resulting in 3 3  submatrices instead of the scalars known from the positive sequence system. 

 

1,1 1,2 1, K,1 K,1

2,1 2,2 2, K,2 K,2
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  (8.11) 

with 
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i j

i j i j

i j

Y
Y

Y
Y   (8.12) 

In case of a fault, the nodal currents are superposed by the fault currents. 

 

1,1 1,2 1, K,1 K,1 F,1

2,1 2,2 2, K,2 K,2 F,2

,1 ,2 , K, K, F,

KK K K F

n

n
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u i iY Y Y
u i iY Y Y

u i iY Y Y

Y u i i

1 n1,n1 n

2,n

,

, ,,, , , ,

,n,

  (8.13) 

According to Table 5 for each node a fault matrix and a fault impedance matrix can be defined. 
All nodal fault matrices are combined to a single fault matrix KF  which has block-diagonal 
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form. Thus, it is possible to model as many parallel faults as wanted without additional effort. 
According to eq. (8.8), the fault currents 

 
K,1 F,1

K F

K, F,n n

F i
F i 0

F i
K F

,

F iK FK F   (8.14) 

and the voltages are calculated 

 

T
K,1 F,1K,1 F,1

T
K FK F

T
F,K, F,K, nn nn

E F u Z i
E F u Z i 0

u Z iE F

T
K

, ,,

E F KE F T
K   (8.15) 

Eq. (8.13) is solved for the fault current. The result is inserted into eq. (8.14) and eq. (8.15). 

 K KK K KF Y u i 0   (8.16) 

and 

 T
K F KKK K KE F u Z Y u i 0   (8.17) 

Reformulation of eq. (8.17) results in 

 T T
K F KK K FK KE F E Z Y u E F Z i 0   (8.18) 

Eq. (8.18) is a voltage constraint. It can be multiplied with KKY  to formally convert it into a 
current constraint. After that, it is set equal to the current constraint from eq. (8.16). 

 T T
K KK KK K F KK K FK K K KF Y u i Y E F E Z Y u E F Z i   (8.19) 

Using the auxiliary matrix 

 T
ZF KK K FF Y E F Z   (8.20) 

eq. (8.19) can be solved and reformulated into the well-known current equation form 

 
T

K KK KK FZ KK K K FZK K

KK,F K K,F

F Y Y E F Y F u F F i

Y u i
  (8.21) 

The fault matrix method obviously modifies the nodal bus admittance matrix and the right-
hand-side of the current equation. The voltages of the faulty system can now be calculated by 
solving eq. (8.21) for Ku . Afterwards the fault currents can be obtained. 

 KKF K Ki Y u i   (8.22) 

During the entire process, the size of the equation has not changed.  

If all faults do not have an impedance, FZ  and ZFF  are zero matrices. In this case, eq. (8.21) 
can be simplified to  

 T
K KK KK KK K KK KF Y Y Y F u F i   (8.23) 
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If there is no fault, KF  will be the unity matrix and T
KE F  a zero matrix, respectively. 

Eq. (8.23) will be the original current equation again. 

8.3 General description of series faults 
Series faults are changes to the physical behavior of assets. Thus, they are not directly modelled 
using the nodal current equation system but the terminal current equation system instead. Again, 
the fault matrix method aims at calculating interruptions without artificial inner nodes or 
terminals which would change the size of the equation systems depending on the number and 
type of the fault. For the reason of highest relevance, modelling of series faults is demonstrated 
using quadrupoles here. It is nevertheless suitable for any type of equipment and applied in the 
exact same way. 

Similar to the shunt faults, the terminal current equation system needs to be extended by the 
negative and zero sequence system resulting in 3 3  submatrices instead of scalars.  

 AA ABA A

BA BBB B

i uY Y
i uY Y

  (8.24) 

At each terminal, a series fault can be modelled as a series voltage which superposes to the 
terminal voltages 

 A,F F,AAA AB A

B,F F,BBA BB B

i uuY Y
i uuY Y

  (8.25) 

For both terminals, the voltage constraints 

 T,A F,A

T,B F,B

uF
0

uF
  (8.26) 

and current constraints  

 F,A F,AT A
T

F,A F,BB

uYi
E F 0

uYi
  (8.27) 

are defined. For the entire grid this results in 

 TT,F T Fi Y u u   (8.28) 

with the fault constraints 

 T FF u 0   (8.29) 

and 

 T
T FT FE F i Y u 0   (8.30) 

Similar to the shunt faults, as a first step, the faulty, dependent values – in the case the terminal 
currents – are eliminated by inserting eq. (8.28) into eq. (8.30).  

 T
T T T FT FE F Y u Y Y u 0   (8.31) 
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Using the auxiliary matrix 

 H T FY Y Y   (8.32) 

the voltage constraints are again formally converted into current constraints which are set equal 
to the current constraints given in eq. (8.31). 

 T
T T H H TT F FE F Y u Y u Y F u   (8.33) 

Eq. (8.33) is now brought into the well-known current equation form 

 T T
H T H H T T TF TY F Y Y F u E F Y u   (8.34) 

and can be solved for Fu  if there is no shunt-free equipment being completely disconnected 
from the grid.  

 
1T T

H T H H T T T FF TF T Tu Y F Y Y F E F Y u Z Y u   (8.35) 

Eq. (8.35) is inserted into the terminal current equation system which results in 

 T T FF T T,FT T Ti Y Y Z Y u Y u   (8.36) 

The fault matrix method only modifies the coefficients of TY  and therefore the physical 
behavior of the assets according to the faults. Due to TY  and T,FY  have the same size and 
terminal enumeration, T,FY  can be used to calculate a bus admittance matrix KK,FY  which then 
can be used to model shunt faults. Thus, multiple parallel shunt and series faults can be 
calculated simultaneously.  

As described, eq. (8.35) cannot be solved, if an asset with no shunt elements is completely 
disconnected from the grid i.e. switched off. This would result in a non-invertible, singular 
admittance matrix due to for the disconnected part of the grid, no reference voltage can be 
given. Due to in this case, independent from the terminal voltages, such an asset cannot transmit 
any currents via its terminals, it is not necessary to model such behavior using the fault matrix 
method. Instead, it is faster and more convenient to directly set the corresponding coefficients 
of T,FY  to zero in eq. (8.36).  

Dipoles are often equipped with an inner current source. The fault matrix method can also be 
applied to such active equipment in the described manner, if the source current is considered in 
the equations. Eq. (8.35) is extended to  

 FF TF T qu Z Y u i   (8.37) 

which results in a modified eq. (8.36) 

 T FF T T,FT T q T q,Fi E Y Z Y u i Y u i   (8.38) 
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8.4 Balanced faults 
In a balanced system, the negative and zero sequence system are passive and can be neglected. 
It is sufficient to only calculate the positive sequence system. This can be applied to balanced 
faults as well, i.e. three phase short-circuits with or without ground contact and three-phase 
series faults. In these cases, the fault matrix is reduced to a scalar which only represents the 
positive sequence system. A healthy state is therefore represented by a “1” and the faulty state 
is indicted by a “0”. The rest of the method works as described. So, all balanced short-circuits 
and series faults can be easily modeled. 

To model balanced admittance-free switching operations, the method can be even further 
simplified. It is not necessary to perform all of the above-mentioned steps. Instead, the resulting 
admittance matrices can be directly given, which increases calculation speed. The resulting 
coefficients of the terminal admittance matrix of quadrupoles is given in Table 6. 

 
Table 6: admittance matrices for switching operations 

A B 
fault 

matrix 
lines two-winding transformers 

closed closed 
1 0
0 1

 A M M

M B M

Y Y Y
Y Y Y

 
AA AB

2
BA BB

Y Y

Y Y
 

closed open 
1 0
0 0

 
B C

A
B C

0

0 0

Y YY
Y Y  

2
AB BB AB

AA AB
BB

0

0 0

Y Y YY Y
Y  

open closed 
0 0
0 1

 A C
B

A C

0 0

0 Y YY
Y Y

 2
2 BA AA BA

BB BA
AA

0 0

0 Y Y YY Y
Y

 

open open 
0 0
0 0

 
0 0
0 0

 
0 0
0 0

 

 


